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Lie Algebras

Definition
Let g be a vector space over a field F, with an operation
g× g→ g, denoted (x , y) 7→ [x , y ] and called the Lie bracket; g is
called a Lie algebra over F if the following axioms are satisfied:
(L1) [αx + βy , z ] = α[x , z ] + β[y , z ],
(L2) [x , αy + βz ] = α[x , y ] + β[x , z ],
(L3) [x , x ] = 0 for all x in g⇒ [x , y ] = −[y , x ],
(L4) [x , [y , x ]] + [y , [z , x ]] + [z , [x , y ]] = 0, where

α, β ∈ F, x , y , z ∈ g.
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Cross-Product Lie Algebra
Let g = R3, and {i , j , k} are the usual unit vectors along the
coordinate axes. We know {i , j , k} for a basis of g, then we define
the bracket structure to be

[i , j] = k, [j , k] = i , [i , k] = −j .

A pictorial representation would be:

i

jk

Let’s check the Jacobi identity to see if this is a Lie algebra.

[i , [j , k]] + [j , [k, i ]] + [k, [j , i ]] = [i , i ] + [j , j] + [k,−k] = 0
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General and Special Linear Lie Algebra I

Example
Consider all n × n matrices. Then if we define [A,B] : g× g→ g
where [A,B] = AB − BA is the commutator bracket, then this is a
Lie algebra, denoted gln.

Example
Consider all n × n matrices whose trace is zero. Then this is also a
Lie subalgebra of gln, denoted sln.
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General and Special Linear Lie Algebra II

Example
Consider the matrices

e =
(

0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
.

These matrices form a basis for sl2 with Lie bracket structure
defined to be

[h, e] = 2e, [h, f ] = −2f , [e, f ] = h.

This will be the driving example of this talk.
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Representation Theory

Definition
A vector space V is called an g-module if there is a mapping
g× V → V , denoted by (x , v) 7→ x · v , which satisfies the
following relationships:
(M1) (αx + βy) · v = α(x · v) + β(y · v),
(M2) x · (αv + βw) = α(x · v) + β(x · w),
(M3) [x , y ] · v = x · (y · v)− y · (x · v), where x , y ∈ g, v ,w ∈ V ,

and α, β ∈ F.
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Representation of sl2

Let V be a finite dimensional irreducible sl2-module. V
decomposes into a direct sum of eigenspaces for h:

V =
⊕
λ∈F

Vλ, where Vλ = {v ∈ V | h · v = λv}.
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Vector Representation I
Again, recall the basis for sl2. The g-module is C2 and the action
is (left) matrix multiplication.

span
{

e =
(

0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)}
.

The “highest weight vector” is
(

1
0

)
, with weight 1. We wish to

consider the “action” of f on the vector.(
0 0
1 0

)(
1
0

)
=
(

0
1

)
,

(
0 0
1 0

)(
0
1

)
=
(

0
0

)
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Vector Representation II

So, if v1 =
(

1
0

)
and v−1 =

(
0
1

)
, we have the following picture

× v1 v−1 ×
ee

f f
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Action of e, f , and h

Vλ Vλ−2 · · · V−λ+2 V−λ
f f f f

e e e e

h h h h
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Tensor Product

Definition
Let V and W be vector spaces of a field F. We construct the free
vectors space S = spanF{V ×W }. Now we construct a subspace
of S, call it R, generated by the following relations:

R =
{

(αv1 + βv2,w)− [α(v1,w) + β(v2,w)],
(v , αw1 + βw2)− [α(v ,w1) + β(v ,w2)],

where v1, v2 ∈ V ; w1,w2 ∈W ; α, β ∈ F. Then the S/R is the
tensor product, namely (V ,W ) + R ≡ V ⊗W .
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Example of an sl2-module

Example
Let V be a highest weight sl2-module with highest weight vector
v1 with weight 1. Consider V ⊗ V . An obvious and natural basis
would be

v1 ⊗ v1, v1 ⊗ v−1, v−1 ⊗ v1, v−1 ⊗ v−1.

We define an action on a tensor (extended linearly) to be as
follows:

x · (a ⊗ b) = (x · a)⊗ b + a ⊗ (x · b).

Then we wish to consider f acting on the highest weight, v1 ⊗ v1.
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× v1 v−1 ×
ee

f f

v1 ⊗ v1

v−1 ⊗ v1 + v1 ⊗ v−1

v−1 ⊗ v−1 + v−1 ⊗ v−1

f

f
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Definition of UEA

We can think of the UEA as an associative algebra with the Lie
algebra structure defined on it.

i : g linear−→ U(g), i([x , y ]) = i(x)i(y)− i(y)i(x), for all x , y ∈ g.

g A

U(g)

j

i ∃! θ
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Quantum Groups

What is a Quantum Group?
We like to think of the Quantum Group as a “deformation” of
U(g). So, quantum groups are not groups, they are a
non-commutative, associative algebra over the field F(q).
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Why Develop Crystal Basis Theory? I

Remember this? It isn’t immediately in Uq(sl2).

v1 ⊗ v1

v−1 ⊗ v1 + v1 ⊗ v−1

v−1 ⊗ v−1 + v−1 ⊗ v−1

f

f
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Why Develop Crystal Basis Theory? II

Example (Cont.)
So, the actual basis for this tensor product in Uq(sl2) is

V (2) =


v1 ⊗ v1,

v−1 ⊗ v1 + qv1 ⊗ v−1,

v−1 ⊗ v−1,

V (0) =
{

v−1 ⊗ v1 − qv1 ⊗ v−1.

If q = 1, we have the the elements in U(sl2). But, it’d be nice if
q = 0, right?
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Crystal Graphs

Let V = Uq(sl3)-module, then we wish to construct the crystal
graph of V ⊗ V .

v1

v2

v3

1

2

v1 ⊗ v1 v2 ⊗ v1 v3 ⊗ v1

v1 ⊗ v2 v2 ⊗ v2 v3 ⊗ v2

v1 ⊗ v3 v2 ⊗ v3 v3 ⊗ v3
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Crystal Graphs

Let V = Uq(sl3)-module, then we wish to construct the crystal
graph of V ⊗ V .

v1

v2

v3

1

2

v1 ⊗ v1 v2 ⊗ v1 v3 ⊗ v1

v1 ⊗ v2 v2 ⊗ v2 v3 ⊗ v2

v1 ⊗ v3 v2 ⊗ v3 v3 ⊗ v3

1

1 1

1

2

2

2 2
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Crystal Structure of U(ŝl2(C))-modules

Let V = Cv− ⊕ Cv+ be the two U(ŝl2(C))-module.

B : + −

1

0

What about the infinite string of (· · ·+−+−+−)?
This is called a fundamental weight, Λ0, and serves as the
highest weight for the crystal structure, P(Λ0).
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The Action of f0 and f1

1. For the action of f1 we cancel out all plus-minus pairs, going
from left to right, and act on the left most +, changing the +
to a −.

2. For the action of f0 we cancel out all minus-plus pairs, going
from right to left, and act on the left most −, changing the −
to a +.
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Crystal Structure P(Λ0) I

(· · ·+−+−+−)

For the action of f1...

(6 · · · 6 + 6 − 6 + 6 − 6 + 6 −)

Nothing to act on...
For the action of f0...

(6 · · · 6 + 6 − 6 + 6 − 6 +−)

So, we can act on the the “−” on the far right and get

(· · ·+−+−+ +)
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Crystal Structure P(Λ0) II

If we continue the process, we get...

(· · ·+−+−+−)

(· · ·+−+−+ +)

(· · ·+−+−−+)

(· · ·+−+ +−+) (· · ·+−+−−−)

(· · ·+−−+−+) (· · ·+−+ +−−)

...
...

...

0

0

0

00

1

1

1

1
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Crystal Structure P(Λ0) II
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Another View

Let’s re-label some things:
+ ≡ 1 , − ≡ 2 , (· · ·+−+−+−) ≡ • . Then the picture is...

•

• ⊗ 1 ⊗ 1

• ⊗ 2 ⊗ 1

• ⊗ 1 ⊗ 1 ⊗ 2 ⊗ 1 • ⊗ 2 ⊗ 2

• ⊗ 2 ⊗ 1 ⊗ 2 ⊗ 1 • ⊗ 1 ⊗ 1 ⊗ 2 ⊗ 2

...
...

...

0

0

0

00

1

1

1

1
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Questions, Comments, Contact Me

Thank You!

smithea.weebly.com
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