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Forward

In this paper we aim to provide the reader with an expository look at several
important results in the study of finite dimensional Lie algebras. Topics dis-
cussed in this text include the construction of the Universal Enveloping Algebra
and a famous result of said algebra given the name the Poincaré-Birkhoff-Witt
Theorem.
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1 Universal Enveloping Algebra

The universal enveloping algebra, denoted U, is an essential tool for studying
representations and more generally for studying homomorphisms of a Lie al-
gebra g into an associative algebra with an identity element [Jac, 1979]. Our
motivation for constructing U is as follows: we wish to view g as an associative
algebra, namely U, via the representations of U. This result is obtained from
an important property of U which states that g is isomorphic to a subalgebra of
U(g). From this isomorphism we get a faithful representation for every g.

1.1 Construction of the Universal Enveloping Algebra

Definition 1.1. An associative algebra A is a vector space V over a field F
which contains an associative, bilinear vector product · : V × V → V . If there
is some element 1 ∈ V such that 1 · a = 1 = a · 1 for every a ∈ A, then A is
unital, or “has unit”.

Definition 1.2. [Hum, 1997] Let g be a Lie algebra over an arbitrary field
F. The universal enveloping algebra of g is a pair (U(g), i), which satisfy the
following:

(i) U(g) is an associative algebra with unit over F.

(ii) i : g→ U(g) is linear and i([x, y]) = i(x)i(y)− i(y)i(x), for all x, y ∈ g.

(iii) (Universal Property) For any associative algebra A with unit over F and for
any linear map j : g→ A satisfying j([x, y]) = j(x)j(y)− j(y)j(x) for each
x, y ∈ g, there exists a unique homomorphism of algebras θ : U(g) → A
such that θ ◦ i = j

Moreover, we can say that the following diagram commutes.

g A

U(g)

j

i ∃! θ

Figure 1: Universal Property

Since g is any Lie algebra there is no guarantee that g has associative multi-
plication. Note that the Lie bracket is not necessarily the commutator, however,
applying i to the bracket of any two x, y ∈ g must give the commutator of i(x)
and i(y). As an aside we should note that Definition 1.2 does not require g to
be of finite dimension or over a field with a particular characteristic. This leaves
us with a possible construction of U(g) for which g is infinite dimensional.
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Theorem 1.1 (Uniqueness and Existence of U(g)). If g is any Lie algebra over
an arbitrary field F, then (U(g), i) exists and is unique, up to isomorphism.

Proof. (Uniqueness) We prove this in the normal convention in that we sup-
pose that the Lie algebra g has two universal enveloping algebras (U(g)), i) and
(B(g), i′). By definition, for each associative F-algebra A there exists a unique
homomorphism ϕA : U(g) → A. In particular, since B(g) is an associative F-
algebra, we have a unique homomorphism of algebras φ : U(g) → B(g). More-
over, we can, by similar logical progression, reverse the roles of U and B; then
there must exist a unique homomorphism of algebra ψ : B(g) → U(g). Then
φ ◦ψ = 1U(g) and ψ ◦φ = 1B(g), which implies that φ is a bijection. However, φ
was already a unique homomorphism, therefore it is an isomorphism. Thereby
making (U(g), i) unique, up to isomorphism.

(Existence) The proof of existence requires the use of the tensor algebra, T ,
which requires extensive background development. And so, we will omit a proof
of the existence here, but one can be found in Chapter 17 of [Hum, 1997].

Remark 1. Theorem 1.1 reveals to us that U(g) of g can be viewed as the
maximal associative algebra over an arbitrary field with unity generated by g
satisfying the relation xy − yx = [x, y] for x, y ∈ g [Hon, 2002].

2 Poincaré-Birkhoff-Witt Theorem

Depending upon the textbook from which you are studying, there are differ-
ent variations of what the author calls the Poincaré-Birkhoff-Witt Theorem (or
PBW Theorem). For the purpose of this paper, we will use the formulation
of the theorem found in Chapter 1 of [Hon, 2002]. It is interesting, however,
to compare how different authors state the PBW Theorem. For example, in
[Hum, 1997] the PBW Theorem is defined as an isomorphism between a sym-
metric algebra and a graded associative algebra. Moreover, the way the the
same theorem is stated in this paper is really a collection of two corollaries of
what Humphreys states the PBW-Theorem to be.

2.1 Poincaré-Birkhoff-Witt Theorem

Theorem 2.1 (Poincaré-Birkhoff-Witt Theorem). [Hon, 2002]

(i) The map i : g→ U(g) is injective.

(ii) Let {xα|α ∈ Ω} be an ordered basis of g. Then, all the elements of the
form xα1xα2 · · ·xαn satisfying α1 ≤ α2 ≤ · · · ≤ αn together with 1 form a
basis of U(g).

A proof of the PBW Theorem is left for the interested reader as it is very
involved and requires the use of tensor products and several other algebras that
have a universal property. A detailed proof can be found in Chapter V of
[Jac, 1979].
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Part (1) of the Theorem 2.1 shines some light on how we can identify each
g ∈ g with i(g) ∈ U(g), thereby allowing us to think of U(g) as a larger algebra
“enveloping” g. The next example shows how we can construct a basis of U(g)
using the PBW Theorem. Bases of these type are often called PBW-type bases.

Definition 2.1 (Polynomial Algebra). Let F be a field. The polynomial algebra
on n indeterminates X1, X2, . . . , Xn is the algebra that is spanned by all the
linear combinations over F of products of the commuting variables Xi, 1 ≤ i ≤ n.
This algebra is denoted F[Xi].

Definition 2.2 (Symmetric Algebra). The symmetric algebra S(V ) on a vector
space V over a field F is the free commutative unital associative algebra over F
containing V .

Lemma 2.2. If F[Xi] is a polynomial algebra and S(V ) is a symmetric algebra,
then F[Xi] ∼= S(V ).

Example 2.1. Let g be an abelian Lie algebra of dimension 2 with basis {x1, x2}
over the field F. We know that the bracket [x1, x2] = 0. So defining the relations
of the elements in the basis to be X1X2 −X2X1 = 0, then by Theorem 2.1, we
know that all the elements of the form Xa

1X
b
2 where a, b ∈ Z≥0 together with 1

form a basis of U(g). But since the relationship yields symmetry of the elements
under multiplication, we have that U(g) is symmetric and therefore isomorphic
to the polynomial algebra of two variables by Lemma 2.2.

We can extend this to the n-dimensional case for an abelian Lie algebra.

Example 2.2. Let g be an abelian Lie algebra of dimension n with a basis
{x1, x2 . . . , xn} over the field F. Again, because g is abelian, we have that
∀1≤i≤j≤n [xi, xj ] = 0. This tells us that the basis elements of U(g) have the
relationship that ∀1≤i≤j≤n XiXj −XjXi = 0. So, the elements in U(g) form a
symmetric algebra that is isomorphic to the polynomial algebra of n variables.
This is inductively extended from the two dimensional case. So, in this we can
view all n-dimensional Lie algebras as a polynomial algebra.

Example 2.3. Consider the following list of matrices:1 0 0
0 −1 0
0 0 0


X1

,

0 0 0
0 1 0
0 0 −1


X2

,

0 1 0
0 0 0
0 0 0


X3

,

0 0 1
0 0 0
0 0 0


X4

,

0 0 0
0 0 1
0 0 0


X5

,

0 0 0
1 0 0
0 0 0


X6

,

0 0 0
0 0 0
1 0 0


X7

,

0 0 0
0 0 0
0 1 0


X8

. (1)

Let X1, X2, X3, X4, X5, X6, X7, X8 be a basis for sl(3,F). Then the elements of
the form xα1

1 , xα2
2 , xα3

3 , xα4
4 , xα5

5 , xα6
6 , xα7

7 , xα8
8 with α1, α2, α3, α4, α5, α6, α7, α8 ∈
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Z≥0 form a basis of the universal enveloping algebra U(sl(3,F)). Consider the
triangular decomposition of sl(3,F),

sl(3,F) = g− ⊕ h⊕ g+,

where g− = span{X6, X7, X8}, h = span{X1, X2}, g+ = span{X3, X4, X5} gives
us three subalgebras of U(sl(3,F)). So by Theorem 2.1 sl(3,F) is a subspace of
U(sl(3,F)). Thus, U(sl(3,F)) will contain U(g−) which contains all polynomials
in g−. Similarly, we will get that U(sl(3,F)) will contain all polynomials in h
and g+. Also, we will get U(sl(3,F)) contains all products of these elements. We
can calculate the commutator bracket for the elements in the basis of sl(3,F)
and force this relationship on the elements in the basis of U(sl(3,F)). Let each
xi, 1 ≤ i ≤ 8 abide by the following relationships:

Table of Relations
x1x2 − x2x1 = 0 x2x3 − x3x2 = −x3 x3x4 − x4x3 = 0
x1x3 − x3x1 = 2x3 x2x4 − x4x2 = x4 x3x5 − x5x3 = x4

x1x4 − x4x1 = x4 x2x5 − x5x2 = 2x5 x3x6 − x6x3 = x1

x1x5 − x5x1 = −x5 x2x6 − x6x2 = x6 x3x7 − x7x3 = −x8

x1x6 − x6x1 = −2x6 x2x7 − x7x2 = −x7 x3x8 − x8x3 = 0
x1x7 − x7x1 = −x7 x2x8 − x8x2 = −2x8

x1x8 − x8x1 = x8

x4x5 − x5x4 = 0 x5x6 − x6x5 = 0 x6x7 − x7x6 = 0
x4x6 − x6x4 = −x5 x5x7 − x7x5 = x6 x6x8 − x8x6 = −x7

x4x7 − x7x4 = x1 + x2 x5x8 − x8x5 = x2 x7x8 − x8x7 = 0
x4x8 − x8x4 = x3

Then {xα1
1 xα2

2 xα3
3 xα4

4 xα5
5 xα6

6 xα7
7 xα8

8 |αi ∈ Z≥0} is a basis for U(sl(3,F)).

It is interesting to note that the choice of ordering the basis elements is
arbitrary. Up to a different labeling, the PBW-type basis is the same. In
construction of these types of bases, the ordering of the basis is imposed, rather
than a specific ordering is required.

2.2 Representations of U(g)

Definition 2.3. A representation of an associative algebra on a vector space
V is an algebra homomorphism ϕ : A→ End V .

Like in the case of a Lie algebra, a representation of an associative algebra
over a field with unity on a vector space defines a module structure on the vector
space and vice versa.

Theorem 2.3. A representation of g can be extended naturally to a representa-
tion of U(g). If we let ϕ be a Lie algebra homomorphism and ϕ̄ be an associative
algebra homomorphism, then the following diagram commutes. Note: By “re-
strict” we mean that we are only considering the elements from End(V ) for
which [a, b] = ab− ba holds.
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g gl(V )

U(g) End(V )

ϕ

Univ. Prop

ϕ̄

Restrict

Proof. As with representations of Lie algebras, a representation of an associative
algebra over a vector space defines a module structure on the vector space, and
vice versa. To this end, consider a g-module, say V, on V , and let g1g2g · · · gn
be an element from U(g). We can define the action of U(g) on V by

(g1g2g3 · · · gn) · v = g1 · ((g2g3 · · · gn) · v) = · · · = g1 · (g2 · (g3 · · · (gn · v)))

for all g1, g2, . . . , gn ∈ g, v ∈ V . Since U(g) is generated by g (see Remark 1),
g1 ·(g2 ·(g3 · · · (gn ·v))) will generate U(g) such that V must also be a U(g)-module.

Now, suppose V is a U(g)-module. Since g can be identified by elements
in U(g) by the injective mapping we get from part (1) of the PBW theorem,
then V is also a g-module. Moreover, we have shown that V can be treated as
a U(g)-module and g-module simultaneously; thus, there is a natural extension
from representations of g to representations of U(g) and vice versa.

An alternate way of wording Theorem 2.3 is given in [Erd, 2006] and written
below.

Theorem 2.4. [Erd, 2006] Let g be a Lie algebra and let U(g) be its universal
enveloping algebra. There is a bijective correspondence between g-modules and
U(g)-modules.

The proof given in [Erd, 2006] uses the authors construction of U(g), which
differs at length from the one given in Definition 1.2 of this paper. As where
we have defined U(g) by its universal property, Erdmann and Wildon have not.
Therefore, this result to them proves that U(g) has a universal property as where
our construction of U(g) imposes this property on the associative algebra. It
should also be noted that this bijective correspondence between modules gives
us a faithful representation from g to U(g). So when we consider the universal
enveloping algebra as a representation of g, there is no collapse of any important
information pertaining to g.

3 Applications of U(g) and the PBW Theorem

Recall that a collection of elements of a Lie algebra are said to be generators
of the Lie algebra if the smallest subalgebra containing them is the Lie algebra
itself. Then we can define a special Lie algebra with applications in physics.

The Heisenberg algebra H is the Lie algebra of dimension 2n+ 1 that is
algebraically generated by the generators Xi, Yj (i, j = 1, 2, . . . n) and Z which
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are subject to the following Lie bracket relations

[Xi, Yj ] = Cδij , [Xi, Z] = 0, [Yj , Z] = 0,

so that Z is a central element. We also have that H is an associative Lie algebra.

Example 3.1. We can construct a basis for U(H), where H is the 3-dimensional
case. We will begin by considering the bracket structure of H, which is [X,Y ] =
Z, [X,Z] = 0 = [Y,Z]. Thus, for U(H), we know that XZ − ZX = 0, Y Z −
ZY = 0, and XY −Y X = Z. If char(F) = 0 then a basis for U(H) is elements of
the form {XaY bZc|a, b, c ∈ Z≥0}, where the basis elements are restricted to the
relation Z = XY −Y X, by the PBW Theorem. If we think of this as generators,
then U(H) is also generated by the elements {1, X, Y, Z}, where XY − XY =
Z. This is an equivalent statement because for generating elements we are
given linear combinations of elements where multiplication is allowed between
the elements, as where with a basis, we are only given linear combination;
therefore, for the PBW-type basis, we require the powers, but with generators
of an algebra, we do not.

Definition 3.1 (Weyl Algebras). A Weyl algebra, denoted An, is a ring of
differential operators with polynomial coefficients (in n variables),

fn(Xi)∂
n
Xi

+ fn−1(Xi)∂
n−1
Xi

+ · · ·+ f1(Xi)∂Xi + f0(Xi).

This algebra is generated by Xi and ∂Xi
.

Remark 2. If F is a field and F[X] is the ring of polynomials in one variable X
with coefficients from F, then each fi lives in F[X] where ∂X is the derivative
with respect to X.

We can generalize for the nth dimensional Heisenberg and say that U(H) ∼=
An. This leads to applications in physics because the Weyl algebra “is isomor-
phic to the algebra of operators polynomials in the position and momenta (i.e
textbook quantum mechanics) of which only the associative algebra structure
is retained...” [Bek, 2005]. The applications of H are rooted in Werner Heisen-
berg’s uncertainty principle. This “uncertain” relation corresponds to the po-
sition and momentum of subatomic particles such as protons, neutrons, and
electrons. Heisenberg constructed the algebra H to study this quantum move-
ment via “matrix mechanics”. However, this way of viewing quantum mechanics
was slow to develop. Around the same time as Heisenberg, Erwin Schrödinger
was studying wave mechanics, which he formulated in the wave equation named
in his honor. It was later found, by Schrödinger, that the Heisenberg’s algebra
was equivalent to the wave equations under a certain transformation.

This equivalency allowed physicists to use two very familiar tools to study
the behavior of waves. When Louis de Broglie, who discovered the theoretical
existence of matter waves, published his results he was able to give a more pow-
erful application to physics. His result allows physicists to use matrix mechanics
to also model light and matter. By using the universal enveloping algebra of H,
the structure becomes even more familiar, namely a polynomial algebra with
the restriction discussed previously. More information on the history and de-
velopment of this topic can be found at [Cas, 2013].

9



4 Conclusion

In summary we have shown that for every Lie algebra, g there exists a unique
associative algebra (with unit), denoted U(g), which inherits the relationship
[a, b] = ab− ba so that U(g) can be viewed an a larger algebra which “envelops”
the Lie algebra. Moreover, we have shown that there is a linear injective map-
ping from the U(g) to the Lie algebra. From this existence, we observed that
U(g) can be viewed as the maximal associative algebra over an arbitrary field
with unity generated by g. We then stated a variation of the PBW Theorem
which gives us a basis for U(g). We then showed that for any abelian Lie algebra,
the corresponding universal enveloping algebra is isomorphic to a polynomial
algebra. We further discussed what U(sl(3,F)) looks like as a PBW-type basis
and concluded with some applications to physics, namely the Heisenberg Lie
algebra.
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