On Crystal Basis Theory of \mathfrak{sl}_2

Ethan A. Smith

Appalachian State University MAA-SE Conference

Friday, March 14, 2014

▲ 同 ▶ → 三 ▶

Intro. to Lie Algebras

Representation Theory of sl₂ Universal Enveloping Algebra Crystal Basis Theory Definition of a Lie Algebra Cross-Product Lie Algebra General and Special Linear Lie Algebra

- 4 同 1 4 三 1 4 三 1

Lie Algebras

Definition

Let \mathfrak{g} be a vector space over a field \mathbb{F} , with an operation $\mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, denoted $(x, y) \mapsto [x, y]$ and called the *Lie bracket*; \mathfrak{g} is called a **Lie algebra** over \mathbb{F} if the following axioms are satisfied: (L1) $[\alpha x + \beta y, z] = \alpha[x, z] + \beta[y, z]$, (L2) $[x, \alpha y + \beta z] = \alpha[x, y] + \beta[x, z]$, (L3) [x, x] = 0 for all x in $\mathfrak{g} \Rightarrow [x, y] = -[y, x]$, (L4) [x, [y, x]] + [y, [z, x]] + [z, [x, y]] = 0, where $\alpha, \beta \in \mathbb{F}, x, y, z \in \mathfrak{g}$.

Definition of a Lie Algebra Cross-Product Lie Algebra General and Special Linear Lie Algebra

Cross-Product Lie Algebra

Let $\mathfrak{g} = \mathbb{R}^3$, and $\{i, j, k\}$ are the usual unit vectors along the coordinate axes. We know $\{i, j, k\}$ for a basis of \mathfrak{g} , then we define the bracket structure to be

$$[i,j] = k$$
, $[j,k] = i$, $[i,k] = -j$.

A pictorial representation would be:

Let's check the Jacobi identity to see if this is a Lie algebra.

$$[i, [j, k]] + [j, [k, i]] + [k, [j, i]] = [i, i] + [j, j] + [k, -k] = 0$$

Definition of a Lie Algebra Cross-Product Lie Algebra General and Special Linear Lie Algebra

General and Special Linear Lie Algebra I

Example

Consider all $n \times n$ matrices. Then if we define $[A, B] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ where [A, B] = AB - BA is the commutator bracket, then this is a Lie algebra, denoted \mathfrak{gl}_n .

Example

Consider all $n \times n$ matrices whose trace is zero. Then this is also a Lie subalgebra of \mathfrak{gl}_n , denoted \mathfrak{sl}_n .

Definition of a Lie Algebra Cross-Product Lie Algebra General and Special Linear Lie Algebra

A - A - A - A

General and Special Linear Lie Algebra II

Example

Consider the matrices

$$e=egin{pmatrix} 0&1\0&0 \end{pmatrix},\;f=egin{pmatrix} 0&0\1&0 \end{pmatrix},\;h=egin{pmatrix} 1&0\0&-1 \end{pmatrix}.$$

These matrices form a basis for \mathfrak{sl}_2 with Lie bracket structure defined to be

$$[h, e] = 2e, \ [h, f] = -2f, \ [e, f] = h.$$

This will be the driving example of this talk.

Basic Definitions Representation of sl₂

Representation Theory

Definition

A vector space V is called an g-module if there is a mapping $\mathfrak{g} \times V \to V$, denoted by $(x, v) \mapsto x \cdot v$, which satisfies the following relationships:

(M1)
$$(\alpha x + \beta y) \cdot v = \alpha(x \cdot v) + \beta(y \cdot v),$$

(M2) $x \cdot (\alpha v + \beta w) = \alpha(x \cdot v) = \beta(x \cdot w),$
(M3) $[x, y] \cdot v = x \cdot (y \cdot v) - y \cdot (x \cdot v),$ where $x, y \in \mathfrak{g}, v, w \in V,$
and $\alpha, \beta \in \mathbb{F}.$

Basic Definitions Representation of sl₂

Representation of \mathfrak{sl}_2

Let V be a finite dimensional irreducible \mathfrak{sl}_2 -module. V decomposes into a direct sum of eigenspaces for h:

$$V = igoplus_{\lambda \in \mathbb{F}} V_{\lambda}, ext{ where } V_{\lambda} = \{ v \in V | \ h \cdot v = \lambda v \}.$$

Basic Definitions Representation of sl₂

Vector Representation I

Again, recall the basis for \mathfrak{sl}_2 . The \mathfrak{g} -module is \mathbb{C} and the action is (left) matrix multiplication.

span
$$\left\{ e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\}.$$

The "highest weight vector" is $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, with weight 1. We wish to consider the "action" of f on the vector.

$$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Basic Definitions Representation of sl₂

Vector Representation II

So, if
$$v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $v_{-1} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, we have the following picture

$$\times \underbrace{v_1}_{e} \underbrace{v_1}_{e} \underbrace{f}_{e} \underbrace{v_{-1}}_{e} \underbrace{f}_{e} \times \underbrace{f}_{e} \times \underbrace{f}_{e} \underbrace{v_{-1}}_{e} \underbrace{f}_{e} \times \underbrace{f}_{e} \times \underbrace{f}_{e} \underbrace{v_{-1}}_{e} \underbrace{f}_{e} \times \underbrace{f}_{e} \times \underbrace{f}_{e} \underbrace{f}_{e} \times \underbrace$$

Ethan A. Smith MAA-SE Conference

< □ > < □ > < □ > < □ > < □ >

æ

Basic Definitions Representation of sl₂

Action of e, f, and h

æ

э

< □ > < □ > < □ > < □ >

Tensor Product Definition of UEA Example of UEA Quantum Groups

Tensor Product

Definition

Let V and W be vector spaces of a field \mathbb{F} . We construct the free vectors space $S = \mathbb{F}(V \times W)$. Now we construct a subspace of S, call it R, generated by the following relations:

$$R = \begin{cases} (\alpha v_1 + \beta v_2, w) - [\alpha(v_1, w) + \beta(v_2, w)], \\ (v, \alpha w_1 + \beta w_2) - [\alpha(v, w_1) + \beta(v, w_2)], \end{cases}$$

where $v_1, v_2 \in V$; $w_1, w_2 \in W$; $\alpha, \beta \in \mathbb{F}$. Then the S/R is the tensor product, namely $(V, W) + R \equiv V \otimes W$.

< 同 × I = >

Tensor Product Definition of UEA Example of UEA Quantum Groups

Definition of UEA

We can think of the UEA as an associative algebra with the Lie algebra structure defined on it.

$$i:\mathfrak{g}\overset{\mathrm{linear}}{\longrightarrow}\mathfrak{U}(\mathfrak{g}),\ i([x,y])=i(x)i(y)-i(y)i(x),\ \text{for all }x,y\in\mathfrak{g}.$$

Tensor Product Definition of UEA Example of UEA Quantum Groups

Using the UEA I

Example

Let V be a highest weight $\mathfrak{U}(\mathfrak{sl}_2)$ -module with highest weight vector v_i with weight *i*. Consider $V \otimes V$. An obvious and natural basis would be

$$v_1 \otimes v_1, v_1 \otimes v_{-1}, v_{-1} \otimes v_1, v_{-1} \otimes v_{-1}.$$

We define an action on a tensor (extended linearly) to be as follows:

$$x \cdot (a \otimes b) = (x \cdot a) \otimes b + a \otimes (x \cdot b).$$

Then we wish to consider f acting on the highest weight, $v_1 \otimes v_1$.

▲ 同 ▶ ▲ 三 ▶ ▲

Tensor Product Definition of UEA Example of UEA Quantum Groups

Using the UEA II

(日)

Tensor Product Definition of UEA Example of UEA Quantum Groups

Quantum Groups

What is a Quantum Group?

We like to think of the Quantum Group as a "deformation" of $\mathfrak{U}(\mathfrak{g})$. So, quantum groups are not groups, they are a non-commutative, associative algebra over the field $\mathbb{F}(q)$.

< 同 × I = >

Motivating Example Crystal Graphs

Why Develop Crystal Basis Theory? I

Remember this picture? He isn't in $\mathfrak{U}_q(\mathfrak{sl}_2)$.

→ < ∃ →

Motivating Example Crystal Graphs

Why Develop Crystal Basis Theory? II

Example (Cont.)

So, the actual basis for this tensor product in $\mathfrak{U}_q(\mathfrak{sl}_2)$ is

$$V(2) = \begin{cases} v_1 \otimes v_1, \\ v_{-1} \otimes v_1 + qv_1 \otimes v_{-1}, \\ v_{-1} \otimes v_{-1}, \end{cases}$$

$$V(0) = \Big\{ v_{-1} \otimes v_1 - qv_1 \otimes v_{-1}.$$

If q = 1, we have the the elements in $\mathfrak{U}(\mathfrak{sl}_2)$. But, it'd be nice if q = 0, right?

< ロ > < 同 > < 三 > < 三 >

Motivating Example Crystal Graphs

Crystal Graphs

Let $V = \mathfrak{U}_q(\mathfrak{sl}_3)$ -module, then we wish to construct the crystal graph of $V \otimes V$.

(日)

э

Motivating Example Crystal Graphs

Crystal Graphs

Let $V = \mathfrak{U}_q(\mathfrak{sl}_3)$ -module, then we wish to construct the crystal graph of $V \otimes V$.

- 4 同 ト 4 ヨ ト

Motivating Example Crystal Graphs

References I

- Karin Erdmann and Mark J. Wildon, *Introduction to lie algebras*, Springer, 2006.
- Jin Hong and Seok-Jin Kang, *Introduction to quantum groups and crystal bases*, 1 ed., American Mathematical Society, 2002.
- James Humpherys, *Introduction to lie algebras and representation theory*, 8 ed., Springer-Verlag, 1997.
- Nathan Jacobson, *Lie algebra*, 1 ed., Dover Publications, 1979.
- Victor Kac, *Infinite-dimensional lie algebras*, 3 ed., Cambridge University Press, 1994.
- Masaki Kashiwara, *On crystal bases*, Canadian Mathematical Socieity Proceedings, March 1995.

Motivating Example Crystal Graphs

References II

George Lusztig, *Finite dimenstional hopf algebras arising from quantized universal enveloping algebras*, Journal of the American Mathematical Socieity **3** (1990), 257–296.

Motivating Example Crystal Graphs

Questions, Comments, Contact Me

Ethan A. Smith

- E-Mail: smithea3@appstate.edu
- Website: http://smithea.weebly.com

< 同 × I = >