On the Universal Enveloping Algebra: Including the Poincaré-Birkhoff-Witt Theorem

Tessa McMullen Ethan Smith

Lie Algebra Project

February 6, 2014

McMullen & Smith UEA & PBW Theorem

Universal Enveloping Algebra

2 Poincaré-Birkhoff-Witt Theorem

- The PBW Theorem
- Representations of $\mathfrak{U}(\mathfrak{g})$

Let \mathfrak{g} be a Lie algebra over an arbitrary field \mathbb{F} . The *universal* enveloping algebra of \mathfrak{g} is a pair $(\mathfrak{U}(\mathfrak{g}), i)$, which satisfy the following:

Let \mathfrak{g} be a Lie algebra over an arbitrary field \mathbb{F} . The *universal* enveloping algebra of \mathfrak{g} is a pair $(\mathfrak{U}(\mathfrak{g}), i)$, which satisfy the following:

(i) $\mathfrak{U}(\mathfrak{g})$ is an associative algebra with unit over \mathbb{F} .

Let \mathfrak{g} be a Lie algebra over an arbitrary field \mathbb{F} . The *universal* enveloping algebra of \mathfrak{g} is a pair $(\mathfrak{U}(\mathfrak{g}), i)$, which satisfy the following:

(i) $\mathfrak{U}(\mathfrak{g})$ is an associative algebra with unit over \mathbb{F} .

(ii) $i: \mathfrak{g} \to \mathfrak{U}(\mathfrak{g})$ is linear and i([x, y]) = i(x)i(y) - i(y)i(x), for all $x, y \in \mathfrak{g}$.

Let \mathfrak{g} be a Lie algebra over an arbitrary field \mathbb{F} . The *universal* enveloping algebra of \mathfrak{g} is a pair $(\mathfrak{U}(\mathfrak{g}), i)$, which satisfy the following:

(i) $\mathfrak{U}(\mathfrak{g})$ is an associative algebra with unit over \mathbb{F} .

- (ii) $i: \mathfrak{g} \to \mathfrak{U}(\mathfrak{g})$ is linear and i([x, y]) = i(x)i(y) i(y)i(x), for all $x, y \in \mathfrak{g}$.
- (iii) (Universal Property) For any associative algebra A with unit over \mathbb{F} and for any linear map $j : \mathfrak{g} \to A$ satisfying j([x,y]) = j(x)j(y) j(y)j(x) for each $x, y \in \mathfrak{g}$, there exists a unique homomorphism of algebras $\theta : \mathfrak{U}(\mathfrak{g}) \to A$ such that $\theta \circ i = j$

< 同 ト < 三 ト < 三 ト

Universal Enveloping Algebra Poincaré-Birkhoff-Witt Theorem

Figure: Universal Property

McMullen & Smith UEA & PBW Theorem

æ

≣⇒

▲ 御 ▶ ▲ 王

Properties of $\mathfrak{U}(\mathfrak{g})$.

- For every \mathfrak{g} there exists a unique $\mathfrak{U}(\mathfrak{g})$.
- The restrictions on g are none. i.e. we can have g be infinite dimensional, which is great for those who study Kac- Moody Lie algebras.

The PBW Theorem Representations of ມ(໘)

Poincaré-Birkhoff-Witt Theorem

Theorem (Poincaré-Birkhoff-Witt Theorem)

- (i) The map $i : \mathfrak{g} \to \mathfrak{U}(\mathfrak{g})$ is injective.
- (ii) Let {x_α | α ∈ Ω} be an ordered basis of g. Then, all the elements of the form x_{α1}x_{α2} ··· x_{αn} satisfying α₁ ≤ α₂ ≤ ··· ≤ α_n together with 1 form a basis of 𝔅(𝔅).

We will refers to this theorem as the PBW Theorem from here on out. Any basis created from this theorem will be considered of PBW-type.

The PBW Theorem Representations of $\mathfrak{U}(\mathfrak{g})$

Consequences of the PBW Theorem

- We can identity \mathfrak{g} in $\mathfrak{U}(\mathfrak{g})$ from the injective mapping *i*.
- 2 We can think of $\mathfrak{U}(\mathfrak{g})$ as "enveloping" \mathfrak{g} .
- **③** We can construct a basis for $\mathfrak{U}(\mathfrak{g})$ using basis elements from \mathfrak{g} .

The PBW Theorem Representations of $\mathfrak{U}(\mathfrak{g})$

Examples of PBW Theorem

Example

Let \mathfrak{g} be an abelian Lie algebra of dimension 2 with a basis $\{x_1, x_2\}$ over the field \mathbb{F} . Construct a basis for $\mathfrak{U}(\mathfrak{g})$ using the PBW Theorem.

Example

If \mathfrak{g} is an *n* dimensional abelian Lie algebra, then the PBW-type basis is the polynomial algebra of *n* variables.

▲ □ ▶ ▲ □ ▶ ▲

The PBW Theorem Representations of $\mathfrak{U}(\mathfrak{g})$

Representations of $\mathfrak{U}(\mathfrak{g})$

Theorem

A representation of \mathfrak{g} can be extended naturally to a representation of $\mathfrak{U}(\mathfrak{g})$. If we let φ be a Lie algebra homomorphism and $\overline{\varphi}$ be an associative algebra homomorphism, then the following diagram commutes.

