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With near a century of development beginning with Sophius Lie in his 1871

Ph.D thesis On a class of geometric transformations, Lie algebras, and their

corresponding groups, have become an essential tool for many mathematicians

and physicists. Their beautiful behaviors and representation theory, despite

being fairly new historically speaking, are still studied and developed from an

abstract perspective. The purpose of the research presented herein is two fold

in nature: the first is an expository look at the construction of quantum groups

and crystal bases of Lie algebras of the finite and affine type, the second is an

investigative search for combinatorial relationships of affine Kac-Moody algebras

highest weight multiplicities via crystal basis theory. A particular focus on

the affine Kac-Moody algebra know as the quantum special linear Lie algebra,

denoted ŝl2, is heavily considered in the later chapters.

iv



ACKNOWLEDGEMENTS

I would like to begin by thanking my adviser Dr. Vicky Klima for her incredible

patience and support during the completion of this research. If not for her

guidance, this would not have been possible, and for that I am grateful. I am

also thankful of my family for their support throughout my matriculation at

both the undergraduate and graduate level. If not for their love, emotional

and financial support, I would not be where I am today. Moreover, I thank

the Department of Mathematical Sciences at Appalachian State University for

providing me with the resources to achieve this goal.

v



DEDICATIONS

I dedicate this work to Bobby G. Lowe and Helen B. Smith, two of my loving

grandparents who were unable to see me reach this level of success. Although

they are no longer with me to celebrate this achievement that they passionately

encouraged, I know that I have honored their legacy and made them proud.

vi



Contents

1 Review of Lie Algebras 1
1.1 Very Brief Historical Exposition of Lie Algebras . . . . . . . . . . . . . . . . 1
1.2 Basics of Lie Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Representation Theory of sln 3
2.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 The special linear Lie algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Representation of sl2(F) . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Representation of sln(F) . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Universal Enveloping Algebra 7
3.1 Universal Enveloping Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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Chapter 1

Review of Lie Algebras

1.1 Very Brief Historical Exposition of Lie Algebras

The history of the development of Lie groups, algebras, and representations thereof is an
immense and growing subject. Dating back to Sophus Lie (1842-1899), Lie algebras have
been a topic of discussion for over 100 years. Lie’s investigation began with all possible
local group actions on manifolds. The Lie algebra is the simplest example where the local
group action acts on itself by left (or right) translation. By axiomatic construction, the
Lie algebra of a Lie group is a linear object. Wilhelm Killing (1847-1923) proposed that
prior to classifying all group actions the classifications of Lie algebras should be completely
developed. The classification of all finite simple Lie algebras was completed by Élie Cartan
(1869-1951) by building upon the work of Lie, Killing, and Friedrick Engel (1861-1941).

1.2 Basics of Lie Algebras

Throughout this paper, unless otherwise noted, F will denote an algebraically closed field
of characteristic zero. To begin our discussion of Lie algebras, we will define a Lie algebra
and the axioms that govern them.

Definition 1.2.1. Let g be a vector space over a field F, with an operation g × g → g,
denoted (x, y) 7→ [x, y] and called the bracket or commutator of x and y, then g is called a
Lie algebra over F if for all x, y, z ∈ g and α, β ∈ F the following axioms are satisfied:

(L1) [αx+ βy, z] = α[x, z] + β[y, z],

(L2) [x, αy + βz] = α[x, y] + β[x, z],

(L3) [x, x] = 0,

(L4) [x, [y, x]] + [y, [z, x]] + [z, [x, y]] = 0.

Since axiom (L4) is such a defining relationship for a Lie algebra, we give it a name:
the Jacobi identity. Note that axioms (L1) and (L2) ensure that the bracket is bilinear.
Moreover, bilinearity of the bracket and (L3) implies that [x, y] = −[y, x]. This can easily
be verified by letting [x + y, x + y] = 0 and simplifying the equation. If g is a Lie algebra
such that for every x and y in g the bracket is zero, then we call this an abelian Lie algebra.
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Example 1.2.1. Let us look at a familiar three-dimensional Lie algebra. Let g = R3 be the
Euclidean 3-space and {i, j, k} be the unit vectors along the coordinate axes. Then {i, j, k}
is a basis for g over R with the bracket structure on g begin the vector cross-product,
namely:

[i, j] = k, [j, k] = i, [i, k] = −j.

We will force (L1)-(L3) to hold by extending the bracket structure linearly to g and noting
that the cross-product of a vector with itself is zero, thus ∀x ∈ g [x, x] = 0. Finally, we
need to check that the Jacobi identity holds for the defined bracket structure. So, we write

[i, [j, k]] + [j, [k, i]] + [k, [j, i]] = [i, i] + [j, j] + [k,−k] = 0

and show that (L4) holds. Thus this is a Lie algebra called the cross-product Lie algebra.

Definition 1.2.2 (Lie subalgebra). We say that a Lie algebra, K, is a (Lie) subalgebra
of g if the following are satisfied:

(1) K is a vector subspace of g.

(2) If x and y are in K, then [x, y] is also in K.

Now we can look at a Lie algebra and ones of its subalgebras that will be of great
importance to us.

Definition 1.2.3. An associative algebra A is a vector space V over a field F which
contains an associative, bilinear vector product · : V × V → V . If there is some element
1 ∈ V such that 1 · a = 1 = a · 1 for every a ∈ A, then A is unital, or “has a unit”.

Remark 1. If we define [−,−] : A×A→ A to be the commutator bracket ([x, y] = x·y−y ·x)
where ‘·’ denotes the associative product in A, then if we endow A with the commutator
brackt it becomes a Lie algebra. This beautiful generalization for associative algebras give
way to the next example.

Example 1.2.2. Consider all n × n matrices over F, which is an associative algebra and
denoted gl(n,F) or gln for short. We can define the bracket on gln to be [−,−] : gln×gln →
gln such that [A,B] = A · B − B · A where A,B ∈ gln. With the bracket defined in this
way gln becomes a Lie algebra which we call the general linear Lie algebra. Now let sln(F)
be all n× n matrices whose trace is zero. We claim that this is a Lie subalgebra of gln. To
prove this we must show that properties (1) and (2) hold from Definition 1.2.2.

Let A and B be matrices from sln. To prove sln is in fact a subspace we show that
an element of the form αA + βB has a trace of zero. So, we write trace(αA + βB) =
αtrace(A) + βtrace(B) = 0 since A,B ∈ sln. So, sln is a vector subspace. Now we must
show that sln is closed under the bracket. To do this we will show that for any A and B
in sln, [A,B] is also in sln; to do this we show that the trace of [A,B] is zero. This fact
follows from the linearity of the trace operator and the fact that trace does not depend
upon the ordering of the matrix product, i.e trace(AB) = trace(BA). Thus trace([A,B]) =
trace(AB −BA) = trace(AB)− trace(BA) = 0.

We have shown that sln is a vector subspace that is closed under the commutator bracket
so we can say that sln is a Lie subalgebra of gln. However, despite being a subalgebra, sln
is a Lie algebra in its own right.
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Chapter 2

Representation Theory of sln

2.1 Basic Definitions

Let g be a Lie algebra and V be a vector space over F.

Definition 2.1.1. A representation of g on V is a Lie algebra homomorphism ϕ : g →
gl(V ).

Definition 2.1.2. A vector space V is called an g-module if for all x, y ∈ g, v, w ∈ V ,
and α, β ∈ F there is a mapping g× V → V , denoted by (x, v) 7→ x · v, which satisfies the
following relationships:

(M1) (αx+ βy) · v = α(x · v) + β(y · v),

(M2) x · (αv + βw) = α(x · v) = β(x · w),

(M3) [x, y] · v = x · (y · v)− y · (x · v).

In light of these definitions we can observe that a representation ϕ : g → gl(V ) of
a Lie algebra on a vector space V defines an g-module structure on V by the equality
x · v = ϕ(x)(v) for any x ∈ g and v ∈ V . Moreover, if V is a g-module, we can define a
representation by the same equation. Therefore, if we are given a representation of g, then
we can define a g-module; if we are given a g-module, then we can define a representation
of g.

Let V and W be g modules, then we can define a homomorphism of g-modules by
a linear map φ : V →W where φ(x · v) = x ·φ(v). In the event that φ is an isomorphism of
vector spaces, then φ is an isomorphism of g-modules. When this happens, the two modules
are said to have equivalent representations.

Let W be a subspace of a g-module V , then W is called a submodule of V if

x ·W ⊂W for all x ∈ g.

Let W be a submodule of a vector space V , then the quotient V/W becomes an g-module
with the action of g defined to be

x · (v +W ) = (x · v) +W for x ∈ g, v ∈ V.

If the only submodules of V are zero and itself, then V is said to be irreducible.

3



2.2 The special linear Lie algebra

2.2.1 Representation of sl2(F)

Again we will consider the special linear Lie algebra when n = 2. Let g = sl2 over F, then
a basis for g consists of three matrices, namely

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
h =

(
1 0
0 −1

)
.

With this basis, the bracket structure of g is [h, e] = 2e, [h, f ] = 2f, [e, f ] = h. It
is interesting to note that the assumption of F being an algebraically closed field is to
ensure all the necessary eigenvalues exist in F. Consider the mapping adx(y) = [x, y], for
x, y ∈ g. This is a Lie algebra homomorphism, which can be proven by showing that
adx([y, z]) = [adx(y), adx(z)], which is a result of the Jacobian identity. Now let V be a
finite dimensional irreducible sl2-module. V decomposes into a direct sum of eigenspaces
for adh:

V =
⊕
λ∈F

Vλ, where Vλ = {v ∈ V | h · v = λv}. (2.1)

If Vλ 6= 0 for some λ ∈ F, then we call λ a weight of V , Vλ is the corresponding
λ-weight space, and the dimension of Vλ is called the weight multiplicity of λ.

The next two lemmas are suggested as an exercise problem in [HK02, Ch1], but impor-
tant to realize the behavior of the representation, so we provide a proof here.

Lemma 2.2.1. If v ∈ Vλ, then the following are true:

(i) e · Vλ ⊂ Vλ+2,

(ii) f · Vλ ⊂ Vλ−2.

Proof. Let v be an element from Vλ.
(i) We wish to show that e · v ∈ Vλ+2. Consider h · (e · v), then we can write

h · (e · v) = [h, e] · v + e · (h · v) Definition 2.1.2, (3)

= 2e · v + λe · v
= (2 + λ)e · v

(ii) Now we wish to show that f · v ∈ Vλ−2. Consider h · (f · v), then we can write

h · (f · v) = [h, f ] · v + f · (h · v) Definition 2.1.2, (3)

= −2f · v + λf · v
= (−2 + λ)f · v

An immediate result of this lemma is the realization of how e, f, and h act on the weight
spaces. From this we see that the action of f moves us down in weight space, e moves us
up in weight space, and h “circles” us around the weight space. We can illustrate this in
the following figure.
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Figure 2.1

Lemma 2.2.2. Let V be a finite dimensional irreducible sl2-module over F, then

(i) f · f (i)v0 = (i+ 1)f (i+1)v0,

(ii) h · f (i)v0 = (λ− 2i)f (i)v0,

(iii) e · f (i)v0 = (λ− i+ 1)f (i−1)v0,

where v−1 = 0 = vm+1 for i = 0, . . . ,m and f (i) = f i

i! .

Proof. Since the dimension of V is finite, there exists a weight λ such that λ + 2 is not a
weight. Choose a vector 0 6= v0 ∈ Vλ. Now define the vectors vi for i = 0, . . . ,m by

vi =
1

i
f · vi−1. (2.2)

By Equation 2.2 we can express vi in the following fashion

vi =
1

i
f · vi−1 −

1

i(i− 1)
f2 · vi−2 =

1

i(i− 1)(i− 2)
f3 · vi−3 = · · · = 1

i!
f iv0 = f (i) · v0. (2.3)

Here vi ∈ Vλ−2i by Lemma 2.2.1. So, we have

(i) This follows directly from the (2.2).
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(ii) Given the fact that vi = 1
i!f

iv0 from Equation (2.3), we know that vi ∈ Vλ−2i, thus

h · vi = (λ− 2i)vi = (λ− 2i)
1

i!
f iv0 = (λ− 2i)f (i)v0.

(iii) (By induction) Recall the relationship [e, f ] = e · f − f · e = h and the fact that
we assumed Vλ+2 = {0} such that e · v0 = 0. Then we begin by assuming that
e · f (i) · v0 = (λ− i+ 1)f (i−1) · v0. So we write

(i+ 1)e · f (i+1) · v0 = e · (i+ 1)f (i+1)v0 (by (2.2))

= e · (f · f (i)(v0) (by (i))

= ([e, f ] + f · e) · f (i)v0

= (h ·+f · e) · f (i)v0

= h · f (i)v0 + f · e · f (i)v0

= (λ− 2i)f (i)v0 + f · (λ− i+ 1)f (i−1)v0 (by induction and (ii))

= (λ− 2i)f (i)v0 + (λ− i+ 1)f · f (i−1)v0

= (λ− 2i)f (i)v0 + i(λ− i+ 1)f (i)v0

= (λ− i+ iλ− i2)f (i)v0

= (i+ 1)(λ− i)f (i)v0

Therefore, by induction e · f (i)v0 = (λ− i+ 1)f (i−1)v0.

2.2.2 Representation of sln(F)

Now that we have looked at the three dimensional special linear Lie algebra, we can consider
the general special linear Lie algebra, denoted sln(F). We define this Lie algebra to be all
n× n with a trace of zero. The matrices of the form

Eij (i 6= j), Ei,i − Ei+1,i+1 (i = 1, . . . , n− 1)

form a basis of sln(F). Here Eij denotes the n × n elementary matrix whose (i, j)-entry
is one and every other entry is zero. Conforming to traditional notational convention of
e, f, and h we define these elements to be of the form ei = Ei,i+1, fi = Ei+1,i, hi =
Ei,i − Ei+1,i+1 (i = 1, . . . , n− 1) satisfying the relations

[ei, fj ] = δijhi, (2.4)

[hi, ej ] =


2ej if i = j,

−ej if |i− j| = 1,

0 if |i− j| > 1.,

(2.5)

[hi, fj ] =


−2fj if i = j,

fj if |i− j| = 1,

0 if |i− j| > 1.

(2.6)
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Chapter 3

Universal Enveloping Algebra

The universal enveloping algebra, denoted U, is an essential tool for studying representations
and more generally for studying homomorphisms of a Lie algebra g into an associative
algebra with an identity element [Jac79]. Our motivation for constructing U is as follows:
we wish to view g as an associative algebra, namely U, via the representations of U. This
result is obtained from an important property of U which states that g is isomorphic to a
subalgebra of U(g). From this isomorphism we get a faithful representation for every g.

3.1 Universal Enveloping Algebra

Definition 3.1.1. Let g be a Lie algebra over an arbitrary field F. The universal en-
veloping algebra of g is a pair (U(g), i), which satisfy the following:

(1) U(g) is an associative algebra with unit over F.

(2) i : g→ U(g) is linear and i([x, y]) = i(x)i(y)− i(y)i(x), for all x, y ∈ g.

(3) (Universal Property) For any associative algebra A with unit over F and for any
linear map j : g → A satisfying j([x, y]) = j(x)j(y) − j(y)j(x) for each x, y ∈ g,
there exists a unique homomorphism of algebras θ : U(g)→ A such that θ ◦ i = j

Moreover, we can say that the following diagram commutes.

g A

U(g)

j

i ∃! θ

Figure 3.1: Universal Property of UEA

Since g is any Lie algebra there is no guarantee that g has associative multiplication.
Note that the Lie bracket is not necessarily the commutator, however, applying i to the
bracket of any two x, y ∈ g must give the commutator of i(x) and i(y). As an aside we
should note that Definition 3.1.1 does not require g to be of finite dimension or over a field
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with a particular characteristic. This leaves us with a possible construction of U(g) for
which g is infinite dimensional.

Theorem 3.1.1 (Uniqueness and Existence of U(g)). If g is any Lie algebra over an arbi-
trary field F, then (U(g), i) exists and is unique, up to isomorphism.

Proof. (Uniqueness) We prove this in the normal convention in that we suppose that the
Lie algebra g has two universal enveloping algebras (U(g)), i) and (B(g), i′). By definition,
for each associative F-algebra A there exists a unique homomorphism ϕA : U(g) → A.
In particular, since B(g) is an associative F-algebra, we have a unique homomorphism of
algebras φ : U(g)→ B(g). Moreover, we can, by similar logical progression, reverse the roles
of U and B; then there must exist a unique homomorphism of algebra ψ : B(g) → U(g).
Then φ ◦ ψ factors through U(g) as well as the unit of U(g), namely 1U(g); therefore, by
uniqueness φ ◦ ψ = 1. Now consider ψ ◦ φ. This mapping factors through B(g) and 1B(g).
Again, by uniqueness of the homomorphism we know ψ ◦ φ = 1, which implies that φ is
invertible and thus a bijection. However, φ was already a unique homomorphism, therefore
it is an isomorphism. Thereby making (U(g), i) unique, up to isomorphism.

(Existence)[Hum97, Ch. 17] Let T (g) be the tensor algebra on g and J be the two sided
ideal in T (g) generated by all the elements of the form x⊗ y− y⊗x− [x, y], where x and y
are in g. Now we define U(g) to be T (g)/J (i.e U(g) = T (g)/J and consider the canonical
homomorphism π : T (g)→ U(g). So, we can observe that

J ⊂
∞⊕
k=1

T kg.

Consequently, π maps T 0g = F isomorphically into U(g), which guarantees U(g) contains
at minimum scalars. Now we claim that (U(g), i) is in fact a universal enveloping algebra
of g, where i : g→ U(g) is the restriction of π to g ⊂ T (g). Let A be any unital associative
algebra over the field F and j : g → A be a linear map satisfying the condition j([x, y]) =
j(x)j(y) − j(y)j(x) for all x, y ∈ g. The universal property of the tensor algebra supplies
us with a unique algebra homomorphism ϕ : T (g) → A that extends j and maps 1 to 1.
Because j is defined in a way that imposes the Lie algebra’s commutator structure on the
associative algebra, this forces all the elements of the form x⊗ y − y ⊗ x− [x, y] be in the
kernel of ϕ for all x, y ∈ g. Therefore, ϕ induces a homomorphism θ : U(g) → A such
that ϕ ◦ i = j. We can see the uniquness of θ, since 1 and the image of i together generate
U(g).

Remark 2. Theorem 3.1.1 reveals to us that U(g) of g can be viewed as the maximal as-
sociative algebra over an arbitrary field with unity generated by g satisfying the relation
xy − yx = [x, y] for x, y ∈ g [HK02].

The next Lemma and Proposition will give us a look at how the elements in U(g) behave
under the left adjoint action in g. Although there is a strictly inductive proof of this result,
we use an important fact about ad(x) and its behavior in an associative algebra.

Lemma 3.1.2. Let Rx (and Lx) be right (and left) multiplication by x in an associative
algebra, then the actions Rx and Lx commute with each other in an associative algebra.

Proof. Let A be an associative algebra and a, b, c ∈ A, then

LaRb(c) = La(cb) = a(cb) = (ac)b = Rb(ac) = RbLa(c).

8



Proposition 3.1.3. Let g be a Lie algebra and U(g) be its universal enveloping Lie algebra,
then for any x, y ∈ U(g) and k ∈ Z≥0, we have

(ad x)k(y) =

k∑
i=0

(−1)i
(
k

i

)
xk−iyxi. (3.1)

Proof. By the previous Lemma, we know that since U(g) is an associative algebra, then Lx
and Rx commute. Moreover, ad(x) = Lx − Rx so we can apply the binomial theorem to
obtain the following equalities.

(ad(x))k(y) = (Lx −Rx)k(y) =

k∑
i=0

(−1)k
(
k

i

)
Lk−ix Rkx(y)

=
k∑
i=0

(−1)k
(
k

i

)
Lk−ix (yxk)

=
k∑
i=0

(−1)k
(
k

i

)
xk−iyxk

Thus concluding our proof.

3.2 Poincaré-Birkhoff-Witt Theorem

Remark 3. Depending upon the textbook from which you are studying, there are different
variations of what the author may refer to as the Poincaré-Birkhoff-Witt Theorem (or PBW
Theorem). For the purpose of this paper, we will use the formulation of the theorem found in
Chapter 1 of [HK02]. It is interesting, however, to compare how different authors state the
PBW Theorem. For example, in [Hum97] the PBW Theorem is defined as an isomorphism
between a symmetric algebra and a graded associative algebra. Moreover, the way the the
same theorem is stated in this paper is really a collection of two corollaries of what [Hum97]
states the PBW-Theorem to be.

Theorem 3.2.1 (Poincaré-Birkhoff-Witt Theorem). [HK02]

(i) The map i : g→ U(g) is injective.

(ii) Let {xα|α ∈ Ω} be an ordered basis of g. Then, all the elements of the form
xα1xα2 · · ·xαn satisfying α1 ≤ α2 ≤ · · · ≤ αn together with 1 form a basis of U(g).

A proof of the PBW Theorem can be found, with great detail and fluidity, in Chapter
17 of [Hum97] and Chapter five of [Jac79].

Part (1) of the Theorem 3.2.1 shines some light on how we can identify each g ∈ g with
i(g) ∈ U(g), thereby allowing us to think of U(g) as a larger algebra “enveloping” g. The
next example shows how we can construct a basis of U(g) using the PBW Theorem. Bases
of these type are often called PBW-type bases.

Definition 3.2.1 (Polynomial Algebra). Let F be a field. The polynomial algebra on n
indeterminates X1, X2, . . . , Xn is the algebra that is spanned by all the linear combinations
over F of products of the commuting variables Xi, 1 ≤ i ≤ n. This algebra is denoted F[Xi].
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Definition 3.2.2 (Symmetric Algebra). The symmetric algebra S(V ) on a vector space
V over a field F is the free commutative unital associative algebra over F containing V .

Lemma 3.2.2. Let F[Xi] be a polynomial algebra and S(V ) be a symmetric algebra. When
dim(V ) is equal to the number of indeterminates of F[Xi], then F[Xi] ∼= S(V ).

Example 3.2.1. Let g be an abelian Lie algebra of dimension 2 with basis {x1, x2} over
the field F. We know that the bracket [x1, x2] = 0. So defining the relations of the ele-
ments in the basis to be X1X2 −X2X1 = 0, then by Theorem 3.2.1, we know that all the
elements of the form Xa

1X
b
2 where a, b ∈ Z≥0 together with 1 form a basis of U(g). But

since the relationship yields symmetry of the elements under multiplication, we have that
U(g) is symmetric and therefore isomorphic to the polynomial algebra of two variables by
Lemma 3.2.2.

We can extend this to the n-dimensional case for an abelian Lie algebra.

Example 3.2.2. Let g be an abelian Lie algebra of dimension n with a basis {x1, x2 . . . , xn}
over the field F. Again, because g is abelian, we have that ∀i, j [xi, xj ] = 0. This tells us
that the basis elements of U(g) have the relationship that ∀1≤i≤j≤n XiXj −XjXi = 0. So,
the elements in U(g) form a symmetric algebra that is isomorphic to the polynomial algebra
of n variables. This is inductively extended from the two dimensional case. So, in light of
this result we can view all n-dimensional Lie algebras as a polynomial algebra in n variables.

It is interesting to note that the choice of ordering on the basis elements of g is arbitrary.
Up to a different labeling, the PBW-type basis is the same. In construction of these types
of bases, the ordering of the basis is imposed, rather than a specific ordering being required.

3.3 Representations of U(g)

Definition 3.3.1. A representation of an associative algebra on a vector space V is an
algebra homomorphism ϕ : A→ End V .

Like in the case of a Lie algebra, a representation of an associative algebra over a field
with unity on a vector space defines a module structure on the vector space and vice versa.

Theorem 3.3.1. A representation of g can be extended naturally to a representation of
U(g). If we let ϕ be a Lie algebra homomorphism and ϕ̄ be an associative algebra homo-
morphism, then the following diagram commutes. Note: By “restrict” we mean that we are
only considering the elements from End(V ) for which [a, b] = ab− ba holds.

g gl(V )

U(g) End(V )

ϕ

Univ. Prop

ϕ̄

Restrict

Proof. As with representations of Lie algebras, a representation of an associative algebra
over a vector space defines a module structure on the vector space, and vice versa. To this
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end, consider a g-module, say V, on V , and let g1g2g · · · gn be an element from U(g). We
can define the action of U(g) on V by

(g1g2g3 · · · gn) · v = g1 · ((g2g3 · · · gn) · v) = · · · = g1 · (g2 · (g3 · · · (gn · v)))

for all g1, g2, . . . , gn ∈ g, v ∈ V . Since U(g) is generated by g (see Remark 2) and g1 · (g2 ·
(g3 · · · (gn · v))) determines an action of U(g) on V .

Now, suppose V is a U(g)-module. Since elements of g can be identified as elements
of U(g) using the injective mapping we get from part (1) of the PBW theorem, then V is
also a g-module. Moreover, we have shown that V can be treated as a U(g)-module and
g-module simultaneously; thus, there is a natural extension from representations of g to
representations of U(g) and vice versa.

An alternate way of wording Theorem 3.3.1 is given in [EW06] and written below.

Theorem 3.3.2. Let g be a Lie algebra and let U(g) be its universal enveloping algebra.
There is a bijective correspondence between g-modules and U(g)-modules.

The proof given in [EW06] uses the authors construction of U(g), which differs at length
from the one given in Definition 3.1.1 of this paper. As where we have defined U(g) by its
universal property, Erdmann and Wildon have not. Therefore, this result to them proves
that U(g) has a universal property as where our construction of U(g) imposes this property on
the associative algebra. It should also be noted that this bijective correspondence between
modules gives us a faithful representation from g to U(g). So when we consider the universal
enveloping algebra as a representation of g, there is no collapse of any important information
pertaining to g.

11



Chapter 4

Kac-Moody Lie Algebras

In the 1960s, Victor Kac and Robert Moody began working on Lie algebras that were not
of finite dimension. Moody “construct[ed] the Lie algebras, derive[d] their basic properties,
and construct[ed] a symmetric invariant from on those Lie algebras derived from so-called
symmetrizable generalized Cartan matrices” in his paper A New Class of Lie Algebras,
published in the Journal of Algebra [BP02]. Although working on a similar question, on
the other side of the world, Victor Kac was devoted to extending the construction which
Jacobson had presented in Chapter 7 to the infinite-dimensional setting [BP02]. Combining
both Moody’s and Kac’s finding (along with their names) we have Kac-Moody Lie algebras.
The simplest examples of infinite-dimensional Kac-Moody Lie algebras are those of affine
type and are the major focus of this paper.

4.1 Basic Definitions and Constructions

The definitions defined in this chapter are based on [Kac94, HK02], chapters one and two
respectively. We will include a few proofs, but refer the read to [Kac94] for further elabora-
tion on particular results. To begin this section we will look at an important matrix which
encodes the information of any Lie algebra. For all definitions henceforth in this chapter,
let I be a finite index set.

Definition 4.1.1. A square matrix A = aij (i, j ∈ I) with the following defining relations
is called a Cartan matrix:

(C1) aii = 2,

(C2) aij ∈ Z≤0 if i 6= j,

(C3) aij = aji ⇔ aji = 0,

(C4) Each proper principal minor of A is positive.

Definition 4.1.2. If there exists a diagonal matrix D = diag(si|i ∈ I) with all si ∈ Z≥0

such that DA is symmetric, then A is said to be symmetrizable.

Remark 4. For the purpose of this paper, we will assume that the generalized Cartan matrix
A is symmetrizable.
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Definition 4.1.3. The (generalized) Cartan matrix A is said to be indecomposable if
for every pair of nonempty subsets I1, I2 ⊂ I with I1 ∪ I2 = I, there exists some i ∈ I1 and
j ∈ I2 such that aij 6= 0.

Definition 4.1.4. The dual weight lattice, denoted P∨, is a free abelian group of rank
2|I| − rank A with an integral basis

{hi|i ∈ I} ∪ {ds|s = 1, . . . , |I| − rank A}.

We can also define the weight space to be

P = {λ ∈ h∗|λ(P∨) ∈ Z}.

Definition 4.1.5. The Cartan subalgebra, denoted h, is the F-linear space spanned by
P∨ such that h = F⊗Z P

∨.

Definition 4.1.6. Let Π∨ = {hi|i ∈ I} and choose a linearly independent subset Π =
{αi|i ∈ I} ⊂ h∗ satisfying

αj(hi) = aij , αj(ds) = 0 or 1

for i, h ∈ I, s = 1, . . . , |I|− rank A. The elements of Π and Π∨ are called simple roots and
simple coroots respectively.

Definition 4.1.7. Let Λi ∈ h∗, where i ∈ I, be the linear functionals on h given by

Λi(hi) = δij , Λi(ds) = 0, for j ∈ I, s = 1, . . . , |I| − rank A.

The elements Λi are called the fundamental weights.

The triple (h,Π,Π∨) is a realization of A and the quintuple (A,Π,Π∨, P, P∨) is called
the Cartan datum associated with the generalized Cartan matrix A. The free abelian
group Q =

⊕
i∈I Zαi is called the root lattice and Q+ =

∑
i∈I Z≥0αi is called the positive

root lattice. Equivalently we say the negative root lattice is Q− = −Q+. There is a partial
ordering on h∗ defined by λ ≥ µ if and only if λ− µ ∈ Q+ for λ, µ ∈ h∗.

Definition 4.1.8. A Kac-Moody algebra g associated with a Cartan datum
(A,Π,Π∨, P, P∨) is the Lie algebra generated by the elements ei, fi for each i ∈ I and
h ∈ P∨ subject to the following defining relations:

(KM1) [h, h′] = 0 for h, h ∈ P∨,

(KM2) [ei, fi] = δijhi,

(KM3) [h, ei] = αi(h)ei for h ∈ P∨,

(KM4) [h, fi] = −αi(g)fi for h ∈ P∨,

(KM5) (ad ei)
1−aijej = 0 for i 6= j,

(KM6) (ad fi)
1−aijfj = 0 for i 6= j.

Remark 5. Relations (1)-(4) are called the Weyl relations and (5)-(6) are called the Serre
relations. The subalgebra generated by ei we denote to be n+ and the subalgebra generated
by fi we denote to be n−. Moreover, for each α ∈ Q, let

gα = {x ∈ g| [h, x] = α(h)(x) for all h ∈ h}.
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This next theorem outlines properties of Kac-Moody algebra and are proved in [Kac94].

Theorem 4.1.1. Let g be a Kac-Moody algebra with an associated generalized Cartan ma-
trix A, then the following statements are true.

(i) g = n− ⊕ h⊕ n+, which is called the triangular decomposition.

(ii) The subalgebras n+ and n− coupled with the defining relations (KM5) and (KM6)
respectively in Definition 4.1.8 are generated by ei and fi respectively.

(iii) With respect to h we have the root space decomposition:

g(A) =

 ⊕
06=α∈Q+

g−α

⊕ h⊕

 ⊕
0 6=α∈Q+

gα

 .

Furthermore, dim g <∞, and gα ⊂ n± for ±α ∈ Q+, α 6= 0.

In light of this, gα = {x ∈ g| [h, x] = α(h)(x) for all h ∈ h} is called the root space
attached to α and g0 = h. The integer mult α := dim gα is called the multiplicity of α. If
α is an element in Q, α 6= 0, and mult 6= 0 then α is called a root. It follows directly from
the previous theorem that every root is either positive or negative. Let (1) ∆+ be the sets
of all positive roots then (2) ∆− = −∆+ are all negative roots and (3) ∆ = ∆+ ∪̇ ∆− is
the collection of all roots.

Invoking the power of Proposition 3.1.3, we obtain the following theorem summarizing
the generators and relations for U(g).

Theorem 4.1.2. The universal enveloping algebra U(g) of g is the associative algebra over
F with unity generated by ei, fi (i ∈ I) and h subject to the following defining relations:

(i) hh′ = h′h for h, h′ ∈ h,

(ii) eifj − fjei = δijhi for i, j ∈ I,

(iii) hei − eih = α(h)ei for h ∈ h, i ∈ I,

(iv) hfi − fih = −α(h)fi for h ∈ h, i ∈ I,

(v)

1−aij∑
k=0

(−1)k
(

1− aij
k

)
e

1−aij−k
i eje

k
i = 0 for i 6= j,

(vi)

1−aij∑
k=0

(−1)k
(

1− aij
k

)
f

1−aij−k
i fjf

k
i = 0 for i 6= j,

Proof. The proof of this theorem is straightforward: the construction of U supplies us with
verification of (i)-(iv) and Proposition 3.1.3 verifies the rest.
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4.2 Generalized Cartan Matrices and Dynkin Diagrams

In this section we will talk briefly about the classifications of the generalized Cartan matrix.
There are three classifications of a generalized Cartan matrix: finite, affine, and indefinite.
Each of these classifications have particular defining features and are discussed and proven in
chapter four of [Kac94]. For the purpose of our discussion, we will only consider generalized
Cartan matrices of the affine type. If A is an indecomposable generalized Cartan matrix
and of affine type, then the following are true about A:

(1) the corank, which is the number of rows minus the rank, of A is 1;

(2) there exists a u > 0 such that Au = 0;

(3) if Av ≥ 0, then Av = 0.

For each A, we can associate to it a graph called the Dynkin diagram. The construc-
tion of such diagram is as follows. If aijaji ≤ 4 and |aij | ≥ |aji|, the vertices i and j are
connect by |aij | lines, and these lines contain an arrow pointing toward i if |aij | > 1. If
aijaji > 4, the vertices i and j are connected by a bold-faced line with an ordered pair of
integers (|aij |, |aji|).

Example 4.2.1. Consider the following Cartan matrices and their corresponding Dynkin
diagrams:

(1)

(
2 −1
−1 2

)
α1 α2

(2)

 2 −1 0
−1 2 −1
0 −1 2


α1 α2 α3

(3)


2 −1 0 0
−1 2 −1 −1
0 −1 2 0
0 −1 0 2

 α1 α2 α3

α4

(4)


2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 −1
0 0 −1 2 0
0 0 −1 0 2

 α1 α2 α3 α4

α5

Examples (1) and (2) are of finite type and correspond to root systems which we label
A2 and A3 respectively. Examples (3) and (4) are also of finite type and correspond to root
systems which we label D4 and D5 respectively. We can immediately begin to see that D4

is the smallest of the finite type D because D3 would correspond to A3. Furthermore, this
would give us isomorphisms of the corresponding Lie algebras.
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Example 4.2.2. Now we shall consider Dynkin diagrams corresponding to affine general-
ized Cartan matrices.

(1)

 2 −1 −1
−1 2 −1
−1 −1 2


α1 α2

α3

(2)


2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2

 α1 α2 α3

α4

(3)



2 −1 0 0 0 0
−1 2 −1 0 0 −1
0 −1 2 0 −1 0
0 0 −1 2 −1 0
0 0 −1 0 2 0
0 −1 0 0 0 2

 α1 α2 α3 α4

α6 α5

(4)



2 −1 0 0 0 0 0
−1 2 −1 0 0 0 −1
0 −1 2 −1 0 0 0
0 −1 −1 2 −1 −1 0
0 0 0 −1 2 0 0
0 0 0 −1 0 2 0
0 −1 0 0 0 0 2

 α1 α2 α3 α4 α5

α7 α6

In this example (1) and (2) correspond to root systems labeled A
(1)
2 and A

(1)
3 respectively.

Labels for (3) and (4) are D
(1)
5 and D

(1)
6 respectively. These two types of affine Kac-Moody

algebras will be the concern of this paper, and denoted, in general, as A
(1)
n and D

(1)
n . We

read this as “a n upper one” and equivalently for D.

Remark 6. Kac-Moody algebras can be thought of as being “one off” from a finite Lie
algebra in both their corresponding generalized Cartan matrix and Dynkin diagram. This
can be observed from their generalized Cartan matrices and Dynkin diagrams. Consider
(1) from Example 4.2.2, then we can see in the following matrix, that the shaded blue area

is the Cartan matrix for A2, which is “embedded” inside A
(1)
2 . 2 −1 −1

−1 2 −1
−1 −1 2


Furthermore, we can see that a Dynkin diagrams corresponding to a finite Lie algebra

is a sub-diagram of a Dynkin diagram corresponding to a affine Lie algebra. For a look at
all the Dynkin diagrams for both finite and affine Lie algebras, see Appendix B.
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4.3 Representation theory of Kac-Moody algebras

The theory presented here should mirror the theory for sl2 presented in Chapter 2. However,
we must adapt the definitions and constructions by minor changes in notation.

Definition 4.3.1. A g-module is called a weight module if it admits the following weight
space decomposition:

V =
⊕
λ∈h∗

Vλ, where Vλ = {v ∈ V | hv = λ(h)v for all h ∈ h}. (4.1)

(1) A module is said to be diagonalizable if it has the weight space decomposition from
Equation 4.1.

(2) A vector v ∈ Vλ is called a weight vector of weight λ.

(3) A vector v is called a maximal vector of weight λ if eiv = 0 for all i ∈ I.

(4) If Vλ 6= 0, then λ is a weight of V and Vλ is the weight space associated with λ.

(5) The dimension of Vλ is called the weight multiplicity of λ. The set of weights for
a g-module is denoted wt(V ).

Remark 7. In general, if we are given an abelian group M , then a decomposition V =⊕
β∈M Vβ of the vector space V into a direct sum of its subspaces is called an M-gradation

of V . A subspace U ⊂ V is called graded if U =
⊕

β∈M (U ∩ Vβ). The elements from Vβ are
called homogeneous of degree β.

Theorem 4.3.1. Let h be a commutative Lie algebra and V a diagonalizable h-module.
Then any submodule of V is graded with respect to the gradation 4.1.

Proof. Let U be a submodule of V . Any v ∈ V can be written in the form v =
∑n

i=1 vi,
where vi ∈ Vλi . Here each vi occupies a distinct eigenspace and are therefore linearly
independent. Let span{vi| i = 1, . . . , n} be such that the collection of vi’s are a basis for U ,
that we will denote β. Moreover, there exists h ∈ h such that λi(h) is distinct for all i in
the index set {1, . . . , n}. So, for v ∈ U , we can write

hk(v) =
n∑
i=1

λi(h)kvi, for all k = 0, 1, . . . , n− 1.

Since these are invariant vector spaces, then hk(v) is an element in U for each k. Then the
coordinate matrix for [v]β and hk(v) would be respectively

[v]β =

1
...
1

 , [hk(v)]β =

λ
k
1
...
λkn

 .
The collection of hk(v) create a coefficient matrix for a system of linear equations con-
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structed in the following fashion:

[[v]β | [h(v)]β | . . . | [hn−1(v)]β] =


1 λ1 · · · λn−1

1

1 λ2 · · · λn−1
2

...
...

...
1 λn · · · λn−1

n

 .
The resulting matrix is a Vandermonde matrix since each λi is distinct, and therefore this
matrix is nonsingular. If vi is a unit vector (i× 1) with a one in the ith position, then for
the system of equation we can say

1 λ1 · · · λn−1
1

1 λ2 · · · λn−1
2

...
...

...
1 λn · · · λn−1

n



a0

a1
...

an−1

 = vi.

From this we know that the system is solvable in U for all vi, where i ∈ {1, . . . , n}. From
this, we can conclude that all vi lie in U .

Definition 4.3.2. The category O is the collection of weight modules V over g with finite
dimensional weight spaces for which there exists a finite number of elements λ1, λ2, . . . , λs ∈
h∗ such that

wt(V ) ⊂ D(λ1) ∪ · · · ∪D(λs),

where D(λ) = {µ ∈ h∗| µ ≤ λ for λ ∈ h∗}.

The morphisms are g-module homomorphisms. Moreover, it can be shown that the
category O is closed under the finite direct sum (or finite tensor product) of objects from
the category O; the quotients of g-modules from the category O are also in the category O.

Definition 4.3.3. A weight module V is a highest weight module of highest weight
λ ∈ h∗ if there exists a nonzero vector vλ ∈ V , called a highest weight vector, such that

(1) eivλ = 0 for all i ∈ I,

(2) hvλ = λ(h)vλ for all h ∈ h

(3) V = U(g)vλ (which necessarily implies that V = U(g)−vλ, the Lie subalgebra gen-
erated by the fi’s in U(g)).

The highest weight module is an interesting example for g-modules in the category O
that we shall consider.

Definition 4.3.4. Let g be a Lie algebra and V and g-module. We say that x in g is locally
nilpotent on V if for any v ∈ V there exists a positive integer N such that xN · v = 0.

Lemma 4.3.2. Let g be a Lie algebra and V be a g-module.

(i) Let {yi| i ∈ Λ} be a set of generator of g and let x ∈ g. If for every i ∈ Λ there
exists a positive integer Ni such that (ad )Ni(yi) = 0, then ad x is locally nilpotent
on g.
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(ii) Let {vi| i ∈ Λ} be a set of generators of V and let x ∈ g. If for each i ∈ Λ there
exists a positive integer Ni such that xNi · vi = 0 and ad x is locally nilpotent on g,
then x is locally nilpotent on V .

Proof. [Kac94, Ch. 4] To prove this result we rely on the Leibnitz formula for derivations,
namely for x, y, z ∈ g and N > 0:

(ad x)N ([x, z]) =
N∑
i=0

(
N

k

)
[(ad x)k(y), (ad x)N−k(z)], (4.2)

xNy =

N∑
i=0

(
N

k

)
((ad x)k(y)xN−k). (4.3)

Equation (4.3) is associated with the universal enveloping algebra where (ad x)(y) =
xy − yx. By induction over the yi’s we yield the result we wished to prove.

Definition 4.3.5. A weight module V over a Kac-Moody algebra is called integrable if
all ei and fi (i ∈ I) are locally nilpotent on V .

Definition 4.3.6. The category Oint consists of integrable g-modules in the category O
such that wt(V ) ⊂ P .

Remark 8. A result of this definition is that any g-module V in the category Oint has a
weight space decomposition

V =
⊕
λ∈h∗

Vλ, where Vλ = {v ∈ V | hv = λ(h)v for all h ∈ P∨}.

If we fix i ∈ I, then g(i) is the subalgebra of g generated by ei, fi, hi. From this we obtain
that g(i) is isomorphic to sl2. The same can be said for U(g), denoted U(i).

As a result of Lemma 4.3.2, a highest weight g-module with highest weight λ and highest
weight vector vλ is integrable if and only if for every i ∈ I, there exists a Ni ∈ Z≥0 such
that fNi

i vλ = 0.

Definition 4.3.7. Consider the following set of weights:

P+ = {λ ∈ P | λ(hi) ∈ Z≥0 for all i ∈ I}.

The weights of this set are called dominant integral weights.

Lemma 4.3.3. [Kac94, Ch.10]

(i) Let V (λ) be the irreducible highest weight g-module with highest weight λ ∈ h∗. Then
V (λ) is in the category Oint if and only if λ ∈ P+.

(ii) Every irreducible g-module in the category Oint is isomorphic to V (λ) for some
λ ∈ P+

Theorem 4.3.4. [Kac94, Ch.10] Let g be a Kac-Moody algebra associated with a Cartan
datum (A,Π,Π∨, P, P∨). Then every g-module in the category Oint is isomorphic to a direct
sum of irreducible highest weight modules V (λ) with λ ∈ P+.
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Corollary 4.3.5. [Kac94, Ch.10] The tensor product of a finite number of g-modules in
the category Oint is completely reducible.

We leave the proofs of these to be referenced by the reader, but mention them to
bring closure to this chapter on Kac-Moody algebras. The next chapter will develop the
necessary information on quantum groups. However, before we move on, we should note
that the results presented in this chapter are an extremely small subset of those from the
field of Kac-Moody algebras. A more deep and rich theory on Kac-Moody algebras and
their representations can be found in [Kac94]. These results are the bare minimum to study
the crystal basis theory we wish to achieve in this text.
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Chapter 5

Quantum Groups

In this chapter, we will develop a basic understanding of Quantum Groups. The notion of
a quantum group rises from the idea that quantum mechanics is a deformation of classical
mechanics. The nomenclature in Quantum Group Theory parallels that of the quantum
mechanics, but from a mathematical perspective. In spite of their name, quantum groups
are not groups at all but rather an associative (albeit noncommutative) algebra with unit.
The construction of this algebra arises from imposing a deformation parameter on the
universal enveloping algebra of a Kac-Moody algebra. The theory that we developed in
the previous chapter on Kac-Moody algebras and their representation will carry over to the
quantum group setting with a change in notation. Moreover, the material presented here is
a summary of that presented in [HK02, Ch. 3]

5.1 Quantum groups

Fix an indeterminate q. We call this the quantum parameter. We will begin by defining
how elements in the scalar field in the quantum group are realized.

Definition 5.1.1. An elements [n]q is called a q-integer, and is written in the form

[n]q =
qn − q−n

q − q−1
. (5.1)

As in the usual sense of probability, we define [0]q! = 0 and [n]q! = [n]q · [n− 1]q · · · [1]q
for n ∈ Z>0. Moreover, let n ≥ m 6= 0, then the quantum equivalence to the binomial
coefficients are given by [

n
m

]
q

=
[n]q!

[n]q![n−m]q!
, (5.2)

and are called q-binomial coefficients.

Moreover, [n]q and

[
n
m

]
q

are elements of the field F(q), which is a field of quotients with

the fixed indeterminate.
Again, let A be a symmetrizable generalized Cartan matrix with a symmetrizing matrix

D = diag(si ∈ Z>0| i ∈ I) and let (A,Π,Π∨, P, P∨) be a Cartan datum associated with A.

Definition 5.1.2. The quantum group or the quantized universal enveloping alge-
bra Uq(g) associated with a Cartan datum (A,Π,Π∨, P, P∨) is the associative algebra over
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F(q) with 1 generated by the elements ei, fi (i ∈ I) and qh (h ∈ P∨) with the following
defining relations:

(1) q0 = 1, qhqh
′

= qh+h′ for h, h′ ∈ P∨,

(2) qheiq
−h = qαi(h)ei for h ∈ P∨,

(3) qhfiq
−h = q−αi(h)fi for h ∈ P∨,

(4) eifi − fiei = δij
qsihi−q−sihi

qsi−q−si
for i, j ∈ I,

(5)
∑1−aij

k=0 (−1)k
[
1− aij
k

]
qsi

e
1−aij−k
i eje

k
i = 0 for i 6= j,

(6)
∑1−aij

k=0 (−1)k
[
1− aij
k

]
qsi

f
1−aij−k
i fjf

k
i = 0 for i 6= j.

Relations (5) and (6) should be familiar to the reader as they are the quantum ana-
log to the Serre relations and are thus called the quantum Serre relations. Set deg fi =
−αi, deg qh = 0, and deg ei = αi. The α root space is given by

(Uq)α = {u ∈ Uq(g)| qhuq−h = qα(h)u for all h ∈ P∨}. (5.3)

Since all the defining relations of the quantum group Uq(g) are homogeneous, it exhibits
a root space decomposition

Uq(g) =
⊕
α∈Q

(Uq)α. (5.4)

Similarly, it can be shown that the quantum adjoint operator has the following identity:

(adq ei)
N (ej) =

N∑
k=0

(−1)kq
k(N+aij−1)
i

[
N
k

]
qi

eN−ki eje
k
i .

This identity allows us to write the quantum Serre relations in a more familiar form:

(adq ei)
1−aij (ej) = 0, (adq fi)

1−aij (fj) = 0 for i 6= j.

Example 5.1.1. Consider the quantum group Uq(sl2), which is generated by the elements
e, f, and q±h as defined in Example 4.2.1 in [HK02, Ch 4]. The defining relations of this
quantum group are

qheq−h = q2e, qhfq−h = q−2f, ef − fe =
qh − q−h

q − q−1
. (5.5)

Moreover, this quantum group has a two-dimensional representation of V = F(q)v−1 ⊕
F(q)v1 and module action defined by

v1


e · v1 = 0

f · v1 = v−1

qh · v1 = qv1

v−1


e · v−1 = v1

f · v−1 = 0

qh · v−1 = q−hv−1

.

We refer to this representation as the vector representation.
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5.2 Representation theory of quantum groups

The theory presented here should look strikingly familiar to the representation theory of
Kac-Moody algebras.

Definition 5.2.1. A Uq(g)-module V q is called a weight module if it admits the following
weight space decomposition:

V q =
⊕
λ∈P

V q
λ , where V q

λ = {v ∈ V q| qhv = qλ(h)v for all h ∈ P∨}. (5.6)

(1) A vector v ∈ V q
λ is called a weight vector of weight λ.

(2) A vector v is called a maximal vector of weight λ if eiv = 0 for all i ∈ I.

(3) If V q
λ 6= 0, then λ is a weight of V q and V q

λ is the weight space associated with
λ ∈ P .

(4) The dimension of V q
λ is called the weight multiplicity of λ. The set of weights for

a Uq(g)-module is denoted wt(V ).

Definition 5.2.2. The category Oq is the collection of weight modules V q over Uq(g)
with finite dimensional weight spaces for which there exists a finite number of elements
λ1, λ2, . . . , λs ∈ h∗ such that

wt(V q) ⊂ D(λ1) ∪ · · · ∪D(λs),

where D(λ) = {µ ∈ P | µ ≤ λ for λ ∈ P}.

Just as in the case with Kac-Moody algebras, the most important examples among the
Uq(g)-modules is the category Oq for our discussion is the highest weight modules. A weight
module V q is called a highest weight module with highest weight weight λ ∈ P if there
exists a nonzero vλ ∈ V q such that

eivλ = 0 for all i ∈ I,
qhvλ = qλ(h)vλ for all h ∈ P∨,
V q = Uq(g)vλ, .

The third equation implies that V q = Uq(g)−vλ, which can be generated by the fi elements
in Uq(g). The vector vλ is called the highest weight vector and is unique up to a constant
multiple.

Definition 5.2.3. The category Oqint consists of Uq(g)-modules V q satisfying the following
conditions:

(1) V q has a weight space decomposition V q =
⊕

λ∈P V
q
λ , where

V q
λ = {v ∈ V q| qhv = qλ(h)v for all h ∈ P∨}

and the dimension of V q
λ is finite for all λ ∈ P ,
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(2) there exists a finite number of elements λ1, . . . , λs ∈ P such that

wt(V q) ⊂ D(λ1) ∪ · · · ∪D(λs),

(3) all ei and fi (i ∈ I) are locally nilpotent on V q.

The morphisms in this collection are assumed to be the usual Uq(g)-module homomorphisms.

Remark 9. The category Oqint consists of integrable Uq(g)-modules in the category Oq.
Moreover, Oqint is closed under direct sums and tensor products of finitely many Uq(g)-
modules.

Now we will shift the focus and consider the localization of F[q] at the ideal (q − 1):

A1 = {f(q) ∈ F[q]| f is regular at q = 1} (5.7)

= {g/h| g, h ∈ F[q], h(1) 6= 0}. (5.8)

Definition 5.2.4. Let n ∈ Z, then we define the following relations:

[y;n]q =
yqn − y−1q−n

q − q−1
and (y;n)q =

yqn − 1

q − 1
.

The next lemma shows where these relations live with respect to the quantum group
elements.

Lemma 5.2.1. Let U+
A1

be the A1-subalgebra of UA1 generated by the elements ei for i ∈ I;

let U−A1
be the A1-subalgebra of UA1 generated by the elements fi for i ∈ I; and let U0

A1
be

the A1-subalgebra of UA1 generated by the elements qh for h ∈ P∨. The the following are
true:

(i) (qh;n)q ∈ U0
A1

for all n ∈ Z and h ∈ P∨.

(ii) [qsihi ;n]q ∈ U0
A1

for all n ∈ Z and i ∈ I.

Definition 5.2.5. The A1-form, denoted UA1 generated by the elements ei and fi respec-
tively for i ∈ I. Moreover, let U0

A1
be the A1-subalgebra of UA1 generated by qh

5.3 Classical Limit

In this section V q will denote a highest weight Uq(g)-module of highest weight λ ∈ P and
highest weight vector vλ. Let J1 be the unique maximal ideal of the local ring A1 generated
by q − 1. Then there exists an isomorphism of fields defined by

A1/J1
∼−→ F given by f(q) + J1 7→ f(1).

Remark 10. Under this mapping, the quantum parameter q is mapped onto 1.

We define the F-linear vector spaces

U1 = (A1/J1)⊗A1 UA1 , (5.9)

V 1 = (A1/J1)⊗A1 VA1 . (5.10)
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As a result of this definition, V 1 is a U1-module. It can also be shown that U1 is
isomorphic to U(g) and that V 1 is a highest weight U(g)-module of highest weight λ. To do
this, we begin by realizing that

U1
∼= UA1/J1UA1 and V 1 ∼= VA1/J1VA1 .

Then the natural maps

UA1 → UA1/J1UA1
∼= U1,

VA1 → VA1/J1VA1
∼= V 1.

We will use the usual notation of placing a bar over the image of these maps. The taking
of these maps are called “taking the classical limit”. Again, q is mapped to 1 under these
mappings. The following theorem gives a nice result of the how the elements under this
mapping behave.

Lemma 5.3.1. For each µ ∈ P , define V 1
µ = (A1/J1) ⊗A1 (VA1)µ. The the following are

true:

(i) For each µ ∈ P , if {vi} is a basis of the free A1-module (VA1)µ, then {v̄i} is a basis
of the F-linear space V 1

µ .

(ii) For each µ ∈ P , a set {vi} ⊂ (VA1)µ is A1-linearly independent if the set {v̄i} ⊂ V 1
µ

is F-linearly independent.

Theorem 5.3.2.

(i) The elements ēi, f̄i (i ∈ I) and h̄ (h ∈ P∨) satisfy the defining relations of U(g) given
by Proposition 4.1.8. Therefore, there exists a surjective F-algebra homomorphism
ϕ : U(g)→ U1 and the U1-module V 1 has a U(g)-module structure.

(ii) For each µ ∈ P and h ∈ P∨, the elements h̄ acts on V 1 as scalar multiplication by
µ(h). Thus V 1

µ is the µ-weight space of the U(g)-module V 1.

(iii) As a U(g)-module, V 1 is a highest weight module with highest weight λ ∈ P and
highest weight vector v̄λ.

Remark 11. We would like to conclude this section by clarifying the construction of the
classical limit by way of the unique maximal ideal of a local ring by a quotient. If we let
Jn, where n ∈ Z≥0, be the unique maximal ideal of the local ring An generated by q − n,
then the quotient An/Jn will map the elements generated by q−n to zero in F. This means
that q = n. For the classical limit, this is precisely q = 1. Moreover, this is exactly what we
would expect if we were to take the limit as q goes to one in the traditional calculus sense of
limits. What we have done in this chapter is define the limit in an algebraic fashion. This
definition of the limit will help us when we discuss the crystal limit in the next chapter.
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Chapter 6

Crystal Bases Theory

Crystal bases were introduced by Masaki Kashiwara (1947 - ) and George (Gheorghe)
Lusztig (1946 - ) in 1990. A crystal base, or canonical base as it was first presented, is a
base of a representation, such that generators of a quantum group or semisimple Lie algebra
have particularly simplistic yet useful actions called the Kashiwara operators. These bases
are realizations of the quantum groups when q = 0 and inherit numerous combinatorial
features that reflect the internal structure of integrable representations of quantum groups
in the category Oqint. The definitions and theorems from this chapter are taken from [HK02]
and should be referenced for further elaboration on this subject.

6.1 Motivating Example

Before we delve into the theory, lets begin my looking at Example 4.2.1 again from [HK02,
Ch. 4] that demonstrates why we would like to develop crystal bases for quantum groups.

Example 6.1.1. Let V be a highest weight Uq(sl2)-module with highest weight vector v1

and weight of 1. We would now like to consider the tensor product V ⊗ V . An apparent
basis of this module would be

v1 ⊗ v1, v1 ⊗ v−1, v−1 ⊗ v1, v−1 ⊗ v−1.

However, when q 6= 0, it is does not correspond to the irreducible decomposition of
V ⊗ V , namely V ⊗ V ∼= V (2)⊕ V (0). So, let’s begin by looking at how the tensors behave
under the action of f . The module action on a tensor product (extended linearly) is defined
as

x · (a⊗ b) = (x · a)⊗ b+ a⊗ (x · b). (6.1)

The weights of corresponding weight vectors are added together under the tensor prod-
uct. Therefore, the highest weight vector in the tensor product above is v1 ⊗ v1. Let’s look
at the action of f on this vector. Recalling the module actions from Example 5.1.1, we get
the following diagram for the action of f .
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v1 ⊗ v1

v−1 ⊗ v1 + v1 ⊗ v−1

v−1 ⊗ v−1 + v−1 ⊗ v−1

f

f

Figure 6.1

From this, we can see that the weight of the tensors are 2, 0, and −2 respectively from
the top-down. This would be the basis for V (2), thereby leaving v1 ⊗ v−1 to be a basis for
V (0). However, this is not the only possible basis for V , but is one of them. Another basis,
given by [HK02, Ch.4], is

v1 ⊗ v1, v1 ⊗ v−1 − qv−1 ⊗ v1, v−1 ⊗ v1 + qv1 ⊗ v−1, v−1 ⊗ v−1.

For this particular basis, the natural basis and the quantum basis are equivalent when
q = 0, which is a desirable relationship. Moreover, this would lead us to suspect that
there are particular bases for Uq(g)-modules in the category Oqint that have similar desirable
behavior at q = 0.

6.2 Kashiwara operators

We will develop the crystal basis theory from Uq(g)-modules in the category Oqint. We will
begin by stating a useful lemma in the development and defining relations of the Kashiwara
operators.

Lemma 6.2.1. Let M q be a Uq(g)-module in the category Oqint where M =
⊕

λ∈P Mλ. Then
for each i ∈ I, every weight vector u ∈Mλ (λ ∈ wt(M)) may be written in the form

u = u0 + fiu1 + f
(2)
i u2 + · · ·+ f

(N)
i uN ,

where N ∈ Z≥0 and uk ∈Mλ+kαi
∩ ker ei for all k = 0, 1, . . . , N.

Each uk in the expression is uniquely determined by u and uk 6= 0 only if λ(hi) + k ≥ 0.

Remark 12. Here we see that every weight vector can be written as a sum of weight vectors
living inside different weight spaces. Moreover, each uk must be an element in a weight
space Mλ+kαi

and is mapped to zero under the action of ei, i.e. uk ∈ ker ei.

Definition 6.2.1. The Kashiwara operators, denoted ẽi and f̃i (i ∈ I) on M q, are
defined as follows

ẽiu =

N∑
k=1

f
(k−1)
i uk, f̃iu =

N∑
k=0

f
(k+1)
i uk. (6.2)

Let’s look at an example of how we can use this lemma and consequently, the Kashiwara
operators on a basis element from Example 6.1.1.
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Example 6.2.1. We will divide this example in to two part. The first will be decomposing
a weight vector into the sum of weight vectors. The second part will consist of using the
definition of Kashiwara operators on the given weight vector.

(1) Consider the vector v−1⊗v1. We wish to write this vector in terms of a finite sum of
weight vectors as in Lemma 6.2.1. To this end, we must find u0: a zero weight vector
that becomes zero when acted upon by e. Using the element v1⊗v−1−qv−1⊗v1, we
see that this is in the zero weight space and the action of e sends it to zero; therefore
some multiple of v1 ⊗ v−1 − qv−1 ⊗ v1 is our u0. To find u1 we need a vector in M q

2

that is sent to zero under the action of e. Therefore, u1 is equal to some multiple
of v1 ⊗ v1 under the action of f , which we know is v−1 ⊗ v1 + qv1 ⊗ v−1. We should
note that when we say multiple, we mean that we take the coefficient to be from
the polynomial ring F[q].

v−1 ⊗ v1 = f(q)(v1 ⊗ v−1 − qv−1 ⊗ v1︸ ︷︷ ︸
u0

) + g(q)(f · (v1 ⊗ v1︸ ︷︷ ︸
u1

))

= f(q)(v1 ⊗ v−1 − qv−1 ⊗ v1) + g(q)(v−1 ⊗ v1 + qv1 ⊗ v−1)

To finish this part, we need to solve the system of equation for f(q) and g(q)

−qf(q) + g(q) = 1,

f(q) + qg(q) = 0.

With some algebraic manipulation, we arrive at

f(q) = − q

q2 + 1
, g(q) =

1

q2 + 1
,

and

v−1 ⊗ v1 = − q

q2 + 1
(v1 ⊗ v−1 − qv−1 ⊗ v1) +

1

q2 + 1
(v−1 ⊗ v1 + qv1 ⊗ v−1).

(2) Now, consider again v−1⊗v1 = f(q)(v1⊗v−1−qv−1⊗v1)+g(q)(f ·(v1⊗v1)) defined
in this way. Then

ẽi(v−1 ⊗ v1) = g(q)(f0u1)

= g(q)(v1 ⊗ v1)

f̃i(v−1 ⊗ v1) = g(q)(f · u0 + f (2) · u1)

= g(q)(f · (v1 ⊗ v−1 − qv−1 ⊗ v1) + f (2)(v1 ⊗ v1))

= g(q)(
1

2
f · (f · (v1 ⊗ v1)))

= g(q)(v−1 ⊗ v−1)

We see that when q = 0 we have g(q) = 1, the natural basis discussed in Example 6.1.1
is our exact result and the Kashiwara operators move the vectors in the most natural way
possible.
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Proposition 6.2.2. The following describes the basic properties of Kashiwara operators.
Again, let M q be a Uq(g)-module in the category Oqint where M =

⊕
λ∈P Mλ. Then

(i) ẽiMλ = eiMλ ⊂Mλ+αi
, f̃iMλ = fiMλ ⊂Mλ−αi

for all i ∈ I and λ ∈ P .

(ii) The Kashiwara operators ẽi and f̃i commute with Uq(g)-module homomorphisms.

Reverting back to the localization A1, we now consider A0 of the polynomial ring F[q]
at the ideal (q):

A0 = {f(q) ∈ F(q)| f is regular at q = 0}
= {g/h| g, h ∈ F[q], h(0) 6= 0}.

This results in the local ring A0 to be a principle ideal domain with F(q) as its field
of quotients. This setup should be familiar as it was the driving relation to develop the
classical limit. The same will be done here, but with crystals.

Definition 6.2.2. Let M q be a Uq(g)-module in the category Oqint. A free A0-submodule
L of M q is called a crystal lattice if

(1) L generatesM q as a vector space over F(q) i.e F(q)⊗A0Lλ ∼= M q
λ for each λ ∈ wt(M),

(2) L =
⊕

λ∈P Lλ, where L = L ∩Mλ for all λ ∈ P ,

(3) ẽiL ⊂ L, f̃iL ⊂ L for all i ∈ I.

Now let J0 be the unique maximal ideal of the local ring A0 generated by q. Then there
exists an isomorphism of fields defined by

A0
∼−→ F given by f(q) + J0 7→ f(0).

This forces q to be mapped onto 0 and we have

F⊗A0 L
∼−→ L/J0L = L/qL.

The taking of this mapping is referred to as the crystal limit. Again, we can think of this
construction as in sending q to zero as we would with a normal limit (see Remark 11). As
we did with the classical limit, we denote the elements in the image of the crystal limit as v̄.
Moreover, the Kashiwara operators preserve the lattice L and define equivalent operators
on the quotient L/qL.

Definition 6.2.3. A crystal basis of Uq(g)-module M q in the category Oqint is a pair (L,B)
where the following are true:

(1) L is a crystal lattice of M q,

(2) B is an F-basis of L/qL ∼= F⊗A0 L,

(3) B = ∪̇λ∈PBλ, where Bλ = B ∩ (Lλ/qLλ),

(4) ẽiB ⊂ B ∪ {0}, f̃iB ⊂ B ∪ {0} for all i ∈ I,

(5) for any b, b′ ∈ B and i ∈ I, we have ẽib = b′ if and only if b = ẽib
′.
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Now take B to be the set of vertices and define the I-colored arrows on B by

b −→ b′ if and only if f̃ib = b′ (i ∈ I).

This give B an I-colored oriented graph structure called the crystal graph of M q. We
should also know that this definition of a crystal graph shows that the graph defines the
relation of the Kashiwara operators and vice versa.

The following example shows the use of the crystal lattice and crystal graph of a familiar
quantum group, Uq(sl2).

Example 6.2.2. As we say from Example 5.1.1, Uq(sl2) is generated by the elements
e, f, q±h with the defining relations given in Equation 5.5. For m ∈ Z≥0, let V (m) be the
(m+ 1)-dimensional irreducible Uq(sl2)-module with a basis {u, fu, . . . , f (m)}, where

eu = 0, Ku = qmu,

f (k)u =
1

[k]q!
fku (k = 0, 1, . . . ,m).

Define L(m) and B(m) as

L(m) =
m⊕
k=0

A0f
(k)u, B(m) = {ū, , fu, . . . , f (m)u}.

In this definition of L(m) and B(m), u denotes the highest weight vector of weight m. Then
we can verify that (L(m),B(m)) is in fact a crystal basis. This is straightforward and is a
run-through of the definitions.

Let B be the set of vertices and define the I-colored arrows on B by

b −→ b′ if and only if f̃ib = b′ (i ∈ I).

By this relation, B is given an I-colored oriented graph structure, which we call the crystal
graph of M q. We may also refer to this is an i-string. So, if we consider the previous
example, namely B(m), then the crystal graph of B(m) is

B(m) : u −→ fu −→ · · · −→ f (m)u.

This next example will be important for our study of A
(1)
n .

Example 6.2.3. Consider Uq(sln). This is a quantum group generated by the element
ei, fi, q

±sihi (i = 1, . . . , n − 1) with the quantum group defining relations from Defini-
tion 5.1.2 begin satisfied. Let V =

⊕n
j=1 F(q)vj be the n-dimensional vector space over
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F(q) and a basis {v1, . . . , vn}. We define the action of the Uq(sln)-module on V by

eivj =

{
vi if j = i+ 1,

0 otherwise,

fivj =

{
vi+1 if j = i,

0 otherwise,

q±hvj =


q±1vi if j = i,

q∓1vi+1 if j = i+ 1,

0 otherwise.

Under this action V becomes an irreducible highest weight module over Uq(sln) with highest
weight ε1 and highest weight vector v1. Since this is a highest weight module of Uq(sln),
we give it a special name, the vector representation. If we define L =

⊕n
j=1 A0vj and

B = {v1, . . . , vn}, where vj denotes the image of vj under the crystal limit. It is easily
verified that (L,B) is a crystal basis of V with the crystal graph of B defined as

B : v1
1−→ v2

2−→ · · · n−1−→ vn

6.3 Tensor Product Rule

Definition 6.3.1. [HK02, Ch.4] Let M =
⊕

λ∈P Mλ be a Uq(g)-module in the category Oqint

with a crystal basis (L,B). For i ∈ I and b ∈ Bλ (λ ∈ P ), we define the maps, εi, ϕi : B → Z
by

εi(b) = max{k ≥ 0| ẽki b ∈ B},
ϕi(b) = max{k ≥ 0| f̃ki b ∈ B}.

Remark 13. From this, with respect to the vector representation, we can think of εi(b) as
the number of edges between b and the beginning of its i-string. Moreover, we can think of
ϕi(b) as the number of edges between b and the end of its i-string.

Theorem 6.3.1. [Kas95] Let M q
j be a Uq(g)-module in the category Oqint and let (Lj ,Bj)

be a crystal basis of M q
j (j = 1, 2). Set L = L1 ⊗A0 L2 and B = B1 × B2.

Then the following are true:

(i) (L,B) is a crystal basis of M q
1 ⊗F(q) M

q
2 .

(ii) The action of the Kashiwara operators ẽi and f̃i (i ∈ I) on B is given by

ẽi(b1 ⊗ b2) =

{
ẽib1 ⊗ b2 if ϕi(b1) ≥ εi(b2),

b1 ⊗ ẽib2 if ϕi(b1) < εi(b2),

f̃i(b1 ⊗ b2) =

{
f̃ib1 ⊗ b2 if ϕi(b1) > εi(b2),

b1 ⊗ f̃ib2 if ϕi(b1) ≤ εi(b2).
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Corollary 6.3.2. Under the same assumptions of Theorem 6.3.1, the following equalities
hold true:

wt(b1 ⊗ b2) = wt(b1) + wt(b2),

εi(b1 ⊗ b2) = max(εi(b1), εi(b1)− 〈hi,wt(b1)〉),
ϕi(b1 ⊗ b2) = max(ϕi(b2), ϕi(b1)− 〈hi,wt(b2)〉).

For a proof of Theorem 6.3.1 and Corollary 6.3.2, see [HK02, Ch. 4.4].

Remark 14. To bring these rules to fruition, we outline a few rules for construction the
crystal graph.

(1) The top left-most vector is the highest weight vector in the tensor product.

(2) The ordering should begin column first and then the row.

(3) Each node can only have one arrow of each type entering and exiting it any time.
This means that no node can have two 2-arrows entering or exiting it. This also
restricts us to only having one arrow of each type exiting each node also.

Example 6.3.1. Let V the vector representation of Uq(sl3) with crystal graph

B : v1
1−→ v2

2−→ v3.

We wish to then consider V ∗ with a vector representation defined by

B∗ : v∗3
2−→ v∗2

1−→ v∗1.

Using the tensor product rule, we can construct a crystal graph for B ⊗ B∗.

v1 ⊗ v∗3 v2 ⊗ v∗3 v3 ⊗ v∗3

v1 ⊗ v∗2 v2 ⊗ v∗2 v3 ⊗ v∗2

v1 ⊗ v∗1 v2 ⊗ v∗1 v3 ⊗ v∗1

1

1

1 1

2

2

2

2

Figure 6.2
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6.4 Crystals

We now wish to give the notion of what a crystal associated with a Cartan datum is.

Definition 6.4.1. [HK02, Ch.4] Let I be a finite index set and let A = (aij)i,j∈I be a
generalized Cartan matrix with Cartan datum (A,Π,Π∨, P, P∨). A crystal associated with
the Cartan datum (A,Π,Π∨, P, P∨) is a set B together with the maps wt : B → P, ẽi, f̃i :
B → B ∪ {0}, and εi, ϕi : B → Z ∪ {−∞} (i ∈ I) satisfying the following properties:

(1) ϕi(b) = εi(b) + 〈hi,wt(b)〉 for all i ∈ I,

(2) wt(ẽib) = wt(b) + αi if ẽi(b) ∈ B,

(3) wt(f̃ib) = wt(b)− αi if f̃i(b) ∈ B,

(4) εi(ẽib) = εi(b)− 1, ϕi(ẽib) = ϕi(b) + 1 if ẽi(b) ∈ B,

(5) εi(f̃ib) = εi(b) + 1, ϕi(f̃ib) = ϕi(b)− 1 if f̃i(b) ∈ B,

(6) f̃ib = b′ if and only if b = ẽib
′ for b, b′ ∈ B, i ∈ I,

(7) if ϕi(b) = −∞ for b ∈ B, then ẽib = f̃ib = 0.

To define the tensor product of two crystals, we simply combine Theorem 6.3.1 and
Corollary 6.3.2 into a definition and define the crystal structure based on these relationships.

Remark 15. For a crystal associated with a Cartan datum, we call the basis B a Uq(g)-
crystal. Here Uq(g) is the quantum groups associated with the corresponding Cartan datum
(A,Π,Π∨, P, P∨). Moreover, we let Bλ = {b ∈ B| wt(b) = λ} to ensure that B = ∪̇λ∈PBλ.

6.5 Young Tableaux and Crystals

Now that we have seen the construction of crystal graphs and their rules for construction,
we now wish to consider how to generalize this idea. This process would be difficult to
visualize as we have done in Example 6.3.1; therefore, we look to another powerful tool to
complete this task, namely young tableau. First we consider the vector representation of
gln, which is strikingly familiar to sln. In fact, the crystal is

B : 1
1−→ 2

2−→ · · · n−1−→ n .

As a motivating example, we should consider what the crystal graph of a particular dominant
integral weight, say λ = 3ε1 + 2ε2 + ε3, would look like. To begin, let us define some terms.

Definition 6.5.1. [HK02, Ch. 7.3] A Young diagram is a collection of boxes arranged in
left-justified rows with a weakly decreasing number of boxes in each row.

Remark 16. There are also Young diagrams that are called skew Young diagrams. For these
diagrams, the left-justified criteria is omitted.

Definition 6.5.2. [HK02, Ch. 7.3] A tableau is a Young diagram filled with numbers, one
per box. A semistandard tableau is a tableau obtained from a Young diagram where the
numbers 1, 2, . . . , n are subject to the following conditions:

(1) the entries in each row are weakly increasing,
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(2) the entries in each column are strictly increasing.

For a specific tableau, denoted T , we define its weight to be

wt(T ) = k1ε1 + · · ·+ knεn,

where ki denotes the number of boxes appearing in the ith row of T .

Example 6.5.1. As an example, we will construct the Young diagram corresponding to
λ = 3ε1 +2ε2 + ε3 in gl3. By Definition 6.5.2, we know that there are three boxes in the first
row, two in the second row, and one in the third row. So, the general shape of the tableau
is

.

Definition 6.5.3. [HK02, Ch. 7.3]

(1) The Far-Eastern reading of a semistandard tableau is done by reading down a
column from top to bottom and then proceeding right to left.

(2) The Middle-Eastern reading of a semistandard tableau is done by moving first
across the rows from right to left and then proceeding from top to bottom.

Example 6.5.2. Given the tableau below, we wish to expand it into the tensor product of
the individual blocks.

1 1 3
2 3
3

The Far-Eastern Reading would be

1 1 3
2 3
3

= 3 ⊗ 1 ⊗ 3 ⊗ 1 ⊗ 2 ⊗ 3

and the Middle-Eastern reading would be

1 1 3
2 3
3

= 3 ⊗ 1 ⊗ 1 ⊗ 3 ⊗ 2 ⊗ 3 .

So, let us pick the Middle-Eastern reading. If we apply the action of f̃1, then by using
the Tensor Product Rule from Theorem 6.3.1 we get the result

3 ⊗ 2 ⊗ 1 ⊗ 3 ⊗ 2 ⊗ 3 .

Using this method, we can construct the entire crystal graph using only Crystal Basis
Theory. However, if we build the corresponding tableau, then we realize that

1 1 3
2 3
3

1−→
1 2 3
2 3
3

,

which corresponds to the classical Young tableau theory.
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Remark 17. It can be shown that regardless of which of the two readings you choose, you
can still define a Uq(gln)-crystal structure on the set of all semistandard tableaux of a
particular shape. Moreover, the readings above are “stable” under Kashiwara operators.
For proof and further elaboration on this topic, the reader can refer to [HK02, Ch. 7.3].
This means that we can completely determine the crystal structure of a finite Uq(gln) using
young tableaux theory.

Example 6.5.3. Let us retrogress back to the beginning and consider the dominant integral
weight λ = 3ε1 + 2ε2 + ε3 in gl3. With these new tools, we can write this as a tensor from
the crystal, namely

1 ⊗ 1 ⊗ 1 ⊗ 2 ⊗ 2 ⊗ 3

and consequently construct the corresponding young tableau to achieve the following

1 1 1
2 2
3

.

Since we ultimately wish to draw the Uq(gl3)-crystal B(Y ) for λ using young tableaux
theory, we need some rules on how to complete this task.

To draw a Uq(gl)-crystal using the aforementioned theory, we can use the following rules:

(i) see if any box can be increased by 1 without breaking the criterion from Defini-
tion 6.5.2;

(ii) if a box can be increased, draw a new tableau underneath it with the corresponding
change made; draw a colored arrow coming from the tableau to the changed tableau
labeled with the number inside the box you increased;

(iii) continue (i) and (ii) until the tableau cannot be changed.

The corresponding pictures for λ = 3ε1 + 2ε2 + ε3 in gl3 can be seen below.

1 1 1
2 2
3

1 1 2
2 2
3

1 1 1
2 3
3

1 1 3
2 2
3

1 1 2
2 3
3

1 1 3
2 3
3

1 2 2
2 3
3

1 2 3
2 3
3

1

1

1

1

2

2

2

2

1 ⊗ 1 ⊗ 1 ⊗ 2 ⊗ 2 ⊗ 3

2 ⊗ 1 ⊗ 1 ⊗ 2 ⊗ 2 ⊗ 3 1 ⊗ 1 ⊗ 1 ⊗ 3 ⊗ 2 ⊗ 3

3 ⊗ 1 ⊗ 1 ⊗ 2 ⊗ 2 ⊗ 3 2 ⊗ 1 ⊗ 1 ⊗ 3 ⊗ 2 ⊗ 3

3 ⊗ 1 ⊗ 1 ⊗ 3 ⊗ 2 ⊗ 3 2 ⊗ 2 ⊗ 1 ⊗ 3 ⊗ 2 ⊗ 3

3 ⊗ 2 ⊗ 1 ⊗ 3 ⊗ 2 ⊗ 3

1

1

1

1

2

2

2

2
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Chapter 7

Quantum Affine sl2 and Its Highest
Weight Module V (Λ0)

In this chapter we will define the quantum affine algebra of the special linear Lie algebra
and discuss the crystal structure of the fundamental weight, Λ0. We will show how we can
view the crystal graph structure in a new representation encodes the same behavior as the
conventional notation, but allows us to better see more combinatorial patterns that arise in
the crystal structure of the highest weight vector. Again, we rely heavily on notation used
by [HK02, Ch.9].

7.1 The quantum affine algebra Uq(ŝl2)

Let I = {0, 1} be the the index set and A be the generalized Cartan matrix

(
2 −2
−2 2

)
of

affine A
(1)
1 type. Moreover, let Π = {α0, α1}, Π∨ = {h0, h1}, and P∨ = Zh0 ⊕ Zh1 ⊕ Zd,

where d is defined as α0(d) = 1, α1(d) = 0.

Definition 7.1.1. A fundamental weight Λi, where i ∈ I, is a linear functional on
h = C⊗Z P

∨ that satisfies the identities Λi(hj) = δij and Λi(d) = 0.

From this, we also fix some additional notation. Namely, the null root is defined to
be δ = α0 + α1 such that the weight lattice, P , is P = ZΛ0 ⊕ ZΛ1 ⊕ Zδ. So, the quan-
tum affine algebra Uq(ŝl2) is the quantum group with the corresponding Cartan datum

(A,Π,Π∨, P, P∨) of affine type A
(1)
1 . For brevity, we will denote the subalgebra of Uq(ŝl2)

generated by ei, fi, q
±h as U′q(ŝl2). We will also, by convention, call U′q(ŝl2) the quantum

affine algebra of type A
(1)
1 . Therefore, U′q(ŝl2) is a quantum group with the Cartan datum

(A,Π,Π∨, P̄ , P̄∨), where the δ = 0 in P̄ and P̄∨ = Zh0 ⊕ Zh1. The elements of P and P̄
are called affine weights and classical weights respectively. The reader may note that
we are using the classical limit notation by placing a bar over the image of the classical
projection. To this end, we consider an embedding aff : P → P̄ such that the composition
cl ◦ aff = idP̄ and aff ◦ cl(αi) = αi.

Remark 18. [HK02, Ch 9.2] An important aspect about Uq(ŝl2) and U′q(ŝl2) is that U′q(ŝl2) al-

lows for finite dimensional irreducible modules, as where any non-trivial irreducible Uq(ŝl2)-

module is infinite dimensional. However, infinite dimensional irreducible Uq(ŝl2)-modules
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have finite dimensional weight spaces, whereas the weight spaces of infinite dimensional
U′q(ŝl2)-modules are infinite dimensional.

Let V be a finite dimensional U′q(ŝl2)-module and let z be an indeterminate such that

V aff = C[z, z−1]⊗C V . We define the action of Uq(ŝl2) on V aff to be

e1(zm ⊗ v) = zm ⊗ e1v, e0(zm ⊗ v) = zm+1 ⊗ e0v,

f1(zm ⊗ v) = zm ⊗ f1v, f0(zm ⊗ v) = zm+1 ⊗ f0v,

qh11 (zm ⊗ v) = zm ⊗ e1v, qh00 (zm ⊗ v) = zm ⊗ qh00 v,

qd(zm ⊗ v) = qmzm ⊗ v.

We call the Uq(ŝl2)-module V aff defined this way the affinization of V . Let ζ be a nonzero
complex number. Again, as when we though about the crystal limit, we will consider the
maximal ideal of C[z, z−1] generated by z − ζ, denoted Jζ . To this end, we achieve the
isomorphism C ∼= C[z, z−1]/Jζ . This allows us to define the evaluation module Vζ of V
where

Vζ = C⊗C[z,z−1] V
aff ∼= V aff/JζV

aff

is a U′q(ŝl2)-module.

Let V = Cv1 ⊕ Cv−1 be U′q(ŝl2)-module defined by

e1v1 = 0, f1v1 = v−1, qh1v1 = qv1,

e0v1 = v−1, f0v1 = 0, qh0v1 = q−1v1,

e1v−1 = v1, f1v−1 = 0, qh1v−1 = q−1v−1,

e0v−1 = 0, f0v−1 = v1, qh0v−1 = qv−1.

We can define the affinization of V and construct the evaluation module Vζ , which has the
action defined by

e1v1 = 0, f1v1 = v−1, qh1v1 = qv1,

e0v1 = ζv−1, f0v1 = 0, qh0v1 = q−1v1,

e1v−1 = v1, f1v−1 = 0, qh1v−1 = q−1v−1,

e0v−1 = 0, f0v−1 = ζ−1v1, qh0v−1 = qv−1.

For further elaboration on this module, see Example 9.2.2 in [HK02, Ch. 9.2].

7.2 Crystal Structure of Λ0

Let V = Cv−1 ⊕ Cv1 be the two U′q(ŝl2)-module as defined above. Then if we let v−1 ≡ +
and v1 ≡ −, then the crystal graph of V becomes the following figure.

B : + −
1

0
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We can see that in contrast to previous crystal graphs in the finite case, there is a
possibility of an infinite string of alternating pluses and minuses here in the affine case. We
wish to begin by looking at the highest weight vector uΛ0 in B(Λ0), which can be identified
by the infinite sequence (· · ·+−+−+−). For verification of this, see [HK02, Ch 9.3]. The
crystal structure of Λ0, can be created using several rules for determining how to act using
the Kashiwara operators.

1. For the action of f1 we cancel out all plus-minus pairs, going from left to right, and
act on the left most +, changing the + to a −.

2. For the action of f0 we cancel out all plus-minus pairs, going from right to left, and
act on the left most −, changing the − to a +.

Using these rules, we have the crystal structure of P(Λ0) below.

(· · ·+−+−+−)

(· · ·+−+−+ +)

(· · ·+−+−−+)

(· · ·+−+ +−+) (· · ·+−+−−−)

(· · ·+−−+−+) (· · ·+−+ +−−)

...
...

...

0

0

0

00

1

1

1

1

Now we wish to alter the notation used. Begin my making the following equivalencies:
let a plus be denoted by 1 , a minus be denoted by 2 , and let (· · ·+−+−+−) be denoted
by • . The new crystal graph can be seen in the following figure.

B : 1 2

1

0

With this change in notation, the action of f0 and f1 go essentially unchanged, but
realized in the following way.

1’. For the action of f1 remove all 1 ⊗ 2 and turn the left most 1 to a 2 .

2’. For the action of f0 remove all 2 ⊗ 1 and turn the left most 2 to a 1 .

Using this notation, we can see some patterns occur. Consider the following example.
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Example 7.2.1. We wish to show that the action of f0 turns • into • ⊗ 1 ⊗ 1 . Begin
by realizing that • = • ⊗ 1 ⊗ 2 . By the action of f0, we cancel all 2 ⊗ 1 pairs and
result in the cancellation of all but the very last 2 , which would be turned into a 1 by
the action of f0. Thus we have shown what we wish to show.

Remark 19. The importance of this example lies not in the computation, but the realization
that we can manipulate the • in such a way that we can realize the action of f0 and f1 in
the same way we did with the sequence of plus-minuses, but now we are doing so in a less
intimidating way (i.e void of the appearance of infinite length).

If we translate the previous graph of P(Λ0) using this new notation, we arrive at the
following figure.

•

• ⊗ 1 ⊗ 1

• ⊗ 2 ⊗ 1

• ⊗ 1 ⊗ 1 ⊗ 2 ⊗ 1 • ⊗ 2 ⊗ 2

• ⊗ 2 ⊗ 1 ⊗ 2 ⊗ 1 • ⊗ 1 ⊗ 1 ⊗ 2 ⊗ 2

...
...

...

0

0

0

00

1

1

1

1

Figure 7.1

7.3 Analysis of V (Λ0)

In this section we will analyze some features of Λ0 including the number of weights that
occur in each level and the multiplicities of weights in a particular level. To compute this,
the reader may reference the provided code supplied with this text. The code is written
in Maple; therefore, access to Maplesoft’s Maple software is required to run the program.
However, due to the simplicity of the code, the program could be easily rewritten in any
open source language.

In Appendix C, the reader can find a table providing some of the information the pro-
gram provides organized by levels. The first column of the table is the level with the
enumeration starting at zero; the second column is the number of elements in the corre-
sponding level; the third level is the number of elements that have resulted from i zero
arrows and j one arrows. This is represented by β × [i.j], β ∈ N, which means that there
are β elements that are the result of applying i zero arrows and j one arrows to Λ0 and
thus are of weight Λ0 − iα0 − jα1 = Λ0 − 2(j − i)Λ0 + 2(i− j)Λ1 − iδ.
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Some patterns in these elements become strikingly obvious with the familiarity of integer
sequences. We begin by looking at the number of elements in a particular level. These
numbers, as I have stated, can be found in the second column of the table in Appendix C.
The importance of starting the level enumeration at zero becomes necessary here.

Definition 7.3.1. Let p(n) be the partitioning function that gives the number of ways of
writing the integer n as a sum of positive integers without regard to order. Let q(n) be
the partitioning function that gives the number of ways of writing the integer n as a sum
of positive integers without regard to order with the restriction that all integers in a given
partition are distinct.

If we consider the sequence of number of elements in a given partition, then we see that
the sequence up to 12 levels is 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, . . . , which we can observe as
the output of q(n), where n starts at zero. This leads us to our first conjecture.

Conjecture 1. The number of elements at the nth level in P(Λ0) is exactly q(n).

Now we consider the even levels, written in the form 2n. If we write the most abundant
weight multiplicities, then we get the sequence 1, 1, 2, 3, 5, 7, 11, 15, 22, . . . , which is the
output of p(n), with n starting at zero. Using the notation from the table in Appendix
C, we see that each of these multiplicities is attached to an element of the form [n, n].
Moreover, the next most abundant weight multiplicity for the even level consist of the
following sequence starting at level 6 (= 2 · 3): 1, 1, 2, 3, 5, 7, 11, 15, 22, . . . , which is again
p(n), with n starting at 3. So, if we scale back n by three units, we can write this as
p(n − 3) to ensure the counting starts at n corresponding to the sixth level. Attached to
these multiplicities are elements of the form [n+ 1, n− 1].

We wish to shift our focus to the odd level, written in the form 2n + 1. If we write
the most abundant weight multiplicities, then we again get the sequence of p(n), with n
starting at zero. Attached to these multiplicities are elements of the form [n + 1, n]. The
second most abundant weight multiplicities also follow the sequence of p(n), with n starting
at 1. The elements attached to these multiplicities are of the form [n, n+1]. We summarize
these two paragraphs in the following conjecture.

Conjecture 2. Let n be an integer. The the following are true:

(i) For a level 2n, there are p(n) elements which are generated by n actions of f0 and
n actions of f1.

(ii) For a level 2n ≥ 6, there are p(n− 3) elements which are generated by n+ 1 actions
of f0 and n− 1 actions of f1.

(iii) For a level 2n+ 1, there are p(n) elements which are generated by n+ 1 actions of
f0 and n actions of f1.

(iv) For a level 2n+ 1 ≥ 1, there are p(n− 1) elements which are generated by n actions
of f0 and n+ 1 actions of f1.
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Appendix A

Tensor Products and the Tensor
Algebra

A.1 Tensor Product

Let V and W be a vector space over a field F. We now construct a vector space S over F
with the elements of the Cartesian product set V ×W as basis vectors. Therefore, if v ∈ V
and w ∈ W , then any vector u ∈ S can be written as a linear combination of elements in
the form αv,w(v, w), where α+ v, w ∈ F and only finitely many αv,w are nonzero. Then we
can consider the subspace of S spanned by all the vectors of the following form:

R =

{
(αv1 + βv2, w)− [α(v1, w) + β(v2, w)],

(v, αw1 + βw2)− [α(v, w1) + β(v, w2)],

where v, v1, v2 ∈ V, w,w1, w2 ∈ W, α, β ∈ F. Then the quotient space S/R, which we
denote by V ⊗W , is defined to be the tensor product of V and W over F. To this end,
we can see that the following is true:

v1 ⊗ v2 ⊗ αv3 ⊗ · · · ⊗ βvn−1 ⊗ vn = αβ(v1 ⊗ v2 ⊗ v3 ⊗ · · · ⊗ vn−1 ⊗ vn).

By this construction, we can extend this construction to finite sums of tensor products
and create a multilinear “gadget” which we can use to construct another useful algebra.

A.1.1 Properties of Tensor Products

The following are several properties of tensor products that are known.

Theorem A.1.1. If ϕ is a bilinear map from V ×W to a vector space U , then there exists
a unique linear transformation ψ : V ⊗W → U such that the following diagram commutes.

V ×W U

V ⊗W

ϕ

∃!ψ
ϕ̄
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Theorem A.1.2. Let I and J be indexing sets. Moreover, let {vi| i ∈ I} be a basis for V
and {wj | j ∈ J be a basis for W . Then {vi ⊗ wj | i ∈ I, j ∈ J} is a basis for V ⊗W .

Proofs of these theorems can be found in [DF03, Ch 11.2]

A.2 Tensor Algebra

A.2.1 Construction

Let V be a vector space over an arbitrary field F. For any nonnegative integer k, we define
the kth tensor power of V to be the tensor product of V with itself k times to be

T kV = V ⊗k = V ⊗ V ⊗ V ⊗ · · · ⊗ V.

From this, we can construct the tensor algebra as the direct sum of T kV for k = 0, 1, 2 . . . .
We denote this by T (V ) and is written as

T (V ) =

∞⊕
k=0

T kV = F⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ · · · .

The tensor algebra T is consider the free algebra in that it is the noncommutative
analogue of a polynomial ring on the vector space V . The tensor algebra, like many concepts
in abstract mathematics, satisfies the following universal property:

Let i be an algebra homomorphism of V into T (V ). Any linear transformation ϕ : V →
A to an algebra A over F can be uniquely extended to an algebra homomorphism, ϕ̄, from
T (V ) to A. The mapping i is more specifically a canonical inclusion of V into T (V ).

Moreover, we say that the following diagram commutes.

V T (A)

A

i

∃!ϕ̄ϕ

Figure A.1: Universal Property of T (V )
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Appendix B

Dynkin Diagrams

B.0.2 Classical Simple and Exceptional Lie Algebras

Al α1 α2

. . .
αl−1 αl

(l + 1)

Bl α1 α2

. . .
αl−1 αl
⇒ (2)

Cl α1 α2

. . .
αl−1 αl
⇐ (2)

Dl α1 α2

. . .
αl−2 αl−1

αl

(4)

E6 α1 α2 α3 α4 α5

α6

(3)

E7 α1 α2 α3 α4 α5 α6

α7

(2)

E8 α1 α2 α3 α4 α5 α6 α7

α8

(1)

F4 α1 α2 α3 α4

⇒ (1)

G2 α1 α2

⇒
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A
(1)
1

1 1
⇐⇒

A
(1)
l (l ≥ 2)

1 1
. . .

1 1

1

B
(1)
l (l ≥ 3)

1 2 2
. . .

2 2

1

⇒

C
(1)
l (l ≥ 2)

1 2
. . .

2 1
⇒ ⇐

D
(1)
l (l ≥ 4)

1 2 2
. . .

2 1

1 1

G
(1)
2

1 2 3
⇒

F
(1)
4

1 2 3 4 2
⇒

E
(1)
6

1 2 3 2 1

2

1

E
(1)
7

1 2 3 4 3 2 1

2

E
(1)
8

1 2 3 4 5 6 4 2

3
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Appendix C

Output of Maple Code

Level # Elements in Level Weight Multiplicities

0 1 1× [0, 0]

1 1 1× [1, 0]

2 1 1× [1, 1]

3
2

1× [2, 1]
1× [1, 2]

4 2 2× [2, 2]

5
3

2× [3, 2]
1× [2, 3]

6
4

3× [3, 3]
1× [4, 2]

7
5

3× [4, 3]
2× [3, 4]

8
6

5× [4, 4]
1× [5, 3]

9
8

5× [5, 4]
3× [4, 5]

10
10

7× [5, 5]
2× [6, 4]
1× [4, 5]

11
12

7× [6, 5]
5× [5, 6]

12
15

11× [6, 6]
3× [7, 5]
1× [5, 7]

13
18

11× [7, 6]
7× [6, 7]

14
22

15× [7, 7]
5× [8, 6]
2× [6, 8]
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15
27

15× [8, 7]
11× [7, 8]
1× [9, 6]

16
32

22× [8, 8]
7× [7, 8]
3× [7, 9]

17
38

22× [9, 8]
15× [8, 9]
1× [10, 7]

18
46

30× [9, 9]
11× [10, 8]
5× [8, 10]

19
54

30× [10, 9]
22× [9, 10]
2× [11, 8]

20
64

42× [10, 10]
15× [11, 9]
7× [9, 11]

21
76

42× [11, 10]
30× [10, 11]
3× [12, 9]
1× [9, 12]

22
89

56× [11, 11]
22× [12, 10]
11× [10, 12]

23
104

56× [12, 11]
42× [11, 12]
5× [13, 10]
1× [10, 13]

24
122

77× [12, 12]
30× [13, 11]
15× [11, 13]

25
142

77× [13, 12]
56× [12, 13]
7× [14, 11]
2× [11, 14]

26
165

101× [13, 13]
42× [14, 12]
22× [12, 14]

27
192

101× [14, 13]
77× [13, 14]
11× [15, 12]
3× [12, 15]
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28
222

135× [14, 14]
56× [15, 13]
30× [13, 15]
1× [16, 12]

29
256

135× [15, 14]
101× [14, 15]
15× [16, 13]
5× [13, 16]

30
296

176× [15, 15]
77× [16, 14]
42× [14, 16]
1× [17, 13]

31
340

176× [16, 15]
135× [15, 16]
22× [17, 14]
7× [14, 17]

32
390

231× [16, 16]
101× [17, 15]
56× [15, 17]
2× [18, 14]

33
448

231× [17, 16]
176× [16, 17]
30× [18, 15]
11× [15, 18]

34
512

297× [17, 17]
135× [18, 16]
77× [16, 18]
3× [19, 15]

35
585

297× [18, 17]
231× [17, 18]
42× [19, 16]
15× [16, 19]

36
668

385× [18, 18]
176× [19, 17]
101× [17, 19]
5× [10, 16]
1× [16, 20]

37
760

385× [19, 18]
297× [18, 19]
56× [20, 17]
22× [17, 20]

38
864

490× [19, 19]
231× [20, 18]
135× [18, 20]
7× [21, 17]
1× [17, 21]
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